Gazetteer-Independent Toponym Resolution Using Geographic Word Profiles

Grant DeL.ozier and Jason Baldridge and Loretta London
University of Texas at Austin
Austin TX, 78712
{grantdelozier, jbaldrid } @utexas.edu
loretta.r.london @gmail.com

Abstract

Toponym resolution, or grounding names of places to their
actual locations, is an important problem in analysis of both
historical corpora and present-day news and web content. Re-
cent approaches have shifted from rule-based spatial mini-
mization methods to machine learned classifiers that use fea-
tures of the text surrounding a toponym. Such methods have
been shown to be highly effective, but they crucially rely on
gazetteers and are unable to handle unknown place names or
locations. We address this limitation by modeling the geo-
graphic distributions of words over the earth’s surface: we
calculate the geographic profile of each word based on local
spatial statistics over a set of geo-referenced language mod-
els. These geo-profiles can be further refined by combining
in-domain data with background statistics from Wikipedia.
Our resolver computes the overlap of all geo-profiles in a
given text span; without using a gazetteer, it performs on par
with existing classifiers. When combined with a gazetteer,
it achieves state-of-the-art performance for two standard to-
ponym resolution corpora (TR-CoNLL and Civil War). Fur-
thermore, it dramatically improves recall when toponyms are
identified by named entity recognizers, which often (cor-
rectly) find non-standard variants of toponyms.

Introduction

Toponym Resolution (TR) refers to the task of automat-
ically assigning geographic reference to place names in
text. Place names are highly ambiguous: some have hun-
dreds of possible geographic referents (e.g. Washington is
associated with at least 64 unique geographic referents).
In addition to being highly ambiguous, most place ref-
erences occur only rarely. Nonetheless, toponym resolu-
tion has far reaching applications, with uses in question
answering and information retrieval tasks (Leidner 2008;
Daoud and Huang 2013), crisis response, and social and his-
torical research (Smith and Crane 2001; Grover et al. 2010;
Nesbit 2013).

The majority of work in TR until recent years employed
heuristic techniques for disambiguating place references.
Common approaches included selecting place references
with the highest population, selecting more administratively
prominent places, and selecting places contained in a mini-
mal geographic area given a set of possible referents. Some
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of these heuristics have been shown to perform relatively
well in some text domains, despite their simplicity (Leidner
2008; Speriosu and Baldridge 2013).

There is surprisingly little research that uses machine
learning for toponym resolution. This is in large part due to
limited availability of annotated corpora. Most corpora only
contain training data for a small proportion of possible refer-
ents; e.g., Leidner’s TR-CoNLL contains 800 unique refer-
ents, while common gazetteers have 9 million unique place
referents. In dealing with this paucity of training data, one
strategy uses indirect supervision to create large amounts of
training data from links and annotations in Wikipedia, such
as those shown in Figure 1 (Speriosu and Baldridge 2013;
Santos, Anastdcio, and Martins 2014). Another strategy in-
corporates more generalized features sets, such as certain
document metadata and population features (Lieberman,
Samet, and Sankaranarayanan 2010; Lieberman and Samet
2012; Santos, Anastacio, and Martins 2014). These systems
substantially improved upon the performance of heuristic
techniques, and they have also improved replicable compar-
isons with standard datasets and resources.

This paper addresses a weakness of prior toponym res-
olution work: explicit reliance on curated knowledge re-
sources such as gazetteers. These are highly incomplete re-
sources that depict only narrow portions of the total set of
place names. To reduce dependence on them, we rely on re-
cent advances in the related task of document geolocation,
where the goal is to predict the geographic context of a much
larger span of text. Much of this work has been directed at
guessing social media users’ locations given only their ob-
served language (Cheng, Caverlee, and Lee 2010; Eisenstein
et al. 2010; Wing and Baldridge 2011; Roller et al. 2012;
Wing and Baldridge 2014). The success of these approaches
is generally on a much coarser geographic scale than is re-
quired by TR systems, but the approaches used are appli-
cable to TR. Crucially important to our work are regionally
specific language models. These regional language models
capture differences not just over explicitly geographic con-
text words like Philadelphia and Midwest, but also over la-
tently geographic words such as y’all and hockey. We use
spatial statistics over these models to flip them to a word-
centric perspective that forms the basis of our toponym re-
solver.

Only limited attempts have been made to use local geo-



Figure 1: Wikipedia page for Shadow Lawn Historic District in Austin, Texas. Place Names and coordinates are highlighted.

[Shadow Lawn Historic District |(Austin} [Texas)

From Wikipedia, the free encyclopedia Coondinaios -

The|Shadow Lawn Hisforle District is a historic district in central [iiSTn| [Texas]ihat boasts a cohesive collection
houses built in the southeast portion of [Hyde Fark|during the late 1920s and 1930s.

Shadow Lawn Historic District
U.5. Masional Ragesier of Historic Places
Roughly bounded by FETH Sireet, [391h Sifeel, Fvenue G| and [Duval Sireef] the district includes several homes of U.S. Historic disarict
historic interest from the turn of the twentieth century, including the Col. Monroe M. Shipe House, Hildreth-Flanagan-
Heserman House, Frank M. and Annie G. Covert House, Page-Gilbert House, Smith-Marcuse-Lowry House, and the
Oliphant-Walker House. This subdivision was platted by [Hyde Parkfounder Monroe Shipe and indicated by concrete
markars, some of which still stand today. Shipa's own homa is located at the cornar of 39th Streat and Avanua G.
The district was added to the National Register of Histaric Places in 199012

historical significance stems from the architecture of its howses. The district features a number of
dwellings with modast Tudor Revival detailing characieristic of historicist "cottage™ bungalows built in the 1830s. The

dominanca of this architectwral form is an important feature that distinguishes the district from naarby housing
clusters, as no other area in the northem suburbs of Austin contains as high a concentration of Tudor Revival

Cod. Mcwnion M Shpa House

dwallings. Unkke the bungalows in the nearby[Fyde Fark Hisfonc DISircl] these houses utilized more expeansive

masonry veneer rather than cheaper wood siding. !

graphic clustering techniques in the context of text-based ge-
ographic disambiguation. Cheng, Caverlee, and Lee (2010)
derive information analogous to local geographic clusters
for words to geo-reference Twitter users. Following work by
(Backstrom et al. 2008) on determining the geographic focus
of queries, they identify a subset of words with a prominent
geographic center (characterized by large probability of the
word occurring at a location) and steep decay of the prob-
ability over distance from that center. This approach does
find many geographically indicative words, but it makes as-
sumptions about their distributions that are not ideal for to-
ponym resolution. In particular, they assume that geographic
words have well-defined centers and highly peaked distribu-
tions. Many toponyms—which intuitively should be the most
helpful words for geographic disambiguation—lack such dis-
tributions. Instead, many toponyms are widely dispersed
over distance (e.g. toponyms that describe large geographic
spaces like countries lack steeply peaked centers) or have
multiple prominent geographic centers. Figure 2 gives an ex-
ample of how the toponym Washington is characterized via
multiple prominent geographic clusters.

In this paper, we use the profiles of these local clusters
to build a system that grounds toponyms by finding areas of
overlap in the distributions of toponyms and other words in a
toponym’s context. We also demonstrate that such a system
can operate well without the aid of gazetteer resources and
extensive metadata, and as a result, it performs better than
gazetteer-bound methods on toponyms found by a named-
entity recognizer.

Data
Corpora

Our toponym resolution system requires documents with
latitude-longitude locations to learn per-word spatial distri-
butions. For this, we use GeoWiki, the subset of Wikipedia
pages that contain latitude-longitude pairs in their info box.
We pulled 700,000 such pages in January 2013. Documents
were created from these pages by extracting all titles and
text from the page and associating these documents with the
latitude-longitude in the info box.

We use two corpora used previously by (Speriosu and
Baldridge 2013): TR-CoNLL (Leidner 2008) and CWar
(Speriosu 2013). TR-CoNLL consists of roughly 1,000

Reuter’s international news articles and identifies 6000 to-
ponyms in 200,000 tokens. Place names in the dataset were
hand-annotated with latitude-longitude coordinates. The re-
solved locations range from coarse geographic scales (e.g.
countries) to fine geographic scales (e.g. parks and neigh-
borhoods). TR-CoNLL was split by Speriosu and Baldridge
(2013) into a dev (4,356 Toponyms) and a held-out test set
(1,903 Toponyms). Problems have been noted with some an-
notations in the dataset , including single latitude-longitude
gold references for large discontinuous geographies and
simple annotation errors (Speriosu and Baldridge 2013).

CWar is the Perseus Civil War and 19th Century Ameri-
can Collection, which consists of 341 books (58 million to-
kens) printed around the time of the United States Civil War.
Place names were annotated with single latitude-longitude
pairs using a combination of manual annotation with off-
the-shelf toponym resolvers and named entity recognizers.
We use the same split of CWar as (Speriosu and Baldridge
2013): dev (157,000 toponyms) and test (85,000 toponyms).
It is an interesting dataset for TR evaluation because it is a
substantially different domain than contemporary news ar-
ticles. It also contains a larger proportion of more localized
(Iess populous) place names and is much less geographically
dispersed than TR-ConLL. Unfortunately, numerous issues
exist with the named entity annotations in the corpus ((Spe-
riosu 2013) gives details) so it is appropriate for evaluating
known gold toponyms, but not those identified by a named
entity recognizer.

The Local-Global Lexicon corpus (LGL) was developed
by (Lieberman, Samet, and Sankaranarayanan 2010) to eval-
uate TR systems on geographically localized text domains. It
consists of 588 news articles across 78 sources. The sources
were selected purposefully to highlight less dominant senses
of common places names; e.g., some articles are from the
Paris News (Texas) and the Paris Post-Intelligencer (Ten-
nesee). The dataset contains 5,088 toponyms among which
41% are small populated places.

LGL has critically important differences in how annota-
tions were done compared to related datasets. Demonyms
(e.g. Canadian and Iranian) are marked as toponyms and
annotated with latitude-longitude pairs throughout the cor-
pus. Also, organization names that contain place names are
marked solely as toponyms; e.g., Woodstock is marked as
a toponym even when it is in the larger phrase Woodstock



General Hospital and London is marked as a toponym in Fi-
nancial Times of London. While nested named entities have
been recognized as an important problem in NER system de-
sign and evaluation (Finkel and Manning 2009), using inner-
most entities is unconventional in the context of other To-
ponym Resolution work. The other evaluation corpora used
in this study as well as our NER procedure opt for outer-
most named entity annotations, so we do not directly com-
pare our results to (Lieberman and Samet 2012).

Gazetteers

Previous work has relied on the Geonames gazetteer, which
contains a wide range of place references, from countries to
local parks and bridges. The Geonames gazetteer is global
in scope and very large, containing almost 9 million unique
places. All types of places are referenced with a single
latitude-longitude pair. We additionally use Natural Earth,
which has country, region, and state shapefiles for 500
unique referents.! The shapefiles contain multi-polygon ge-
ometries as geographic references, which are important for
appropriately representing large, discontinuous geographies.

TopoCluster

The key insight of language modeling approaches to geolo-
cation is that many words are strong indicators of location,
and these tend to surface in regionally specific models. How-
ever, rarely is any attempt made to determine the specific
spatial strength of a given word. Our approach, TopoClus-
ter, derives a smoothed geographic likelihood for each word
in the vocabulary and then finds points of strongest over-
lap for a toponym and the words surrounding it—effectively
merging the shared geographic preferences of all words in
the context of a toponym, including the toponym itself.

Consider a very ambiguous toponym like Hyde Park. The
standard view asks what the probability of a given location is
given the context, using a set of models per location. Various
models of this kind have been proposed, including genera-
tive models for geolocation, possibly with feature selection
(Speriosu and Baldridge 2013). TopoCluster in contrast em-
ploys an indirect relation between a target and its context
by appealing to a shared relation in geographic space. Cru-
cially, that geographic space is defined by how tightly all the
words in the vocabulary tie themselves to local regions—
effectively doing selection of geographically releveant fea-
tures in the determination of a given location. One effect
of this is that even in situations where Hyde Park does not
appear at all in training, our system can guess a referent
given the geographic clusters associated with known context
words like Austin or Texas.

The above motivation requires identifying geographic
clusters for every word. We derive these by applying local
spatial statistics over large numbers of geo-referenced lan-
guage models. Disambiguation is performed by overlaying
the geographic clusters for all words in a toponym’s context
and selecting the strongest overlapping point in the distri-
bution. Gazetteer matching can optionally be done by find-

"http://www.naturalearthdata.com/

ing the gazetteer entry that is closest to the most overlapped
point and matches the toponym string being evaluated.
Local spatial statistics have long been used to derive hot
spots in geographic distributions of variables. TopoClus-
ter uses the Local Getis-Ord G;* statistic to measure the
strength of association between words and a geographic
space (Ord and Getis 1995). Local G;* measures the global
proportion of an attribute that is observed in a local kernel.
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Each z; is a measure of the strength of the variable x at
location j and w;; is a kernel defining the weight (similarity)
between locations 4 and j. For x;, we use an unsmoothed
local language model as the strength of a word x in each
geolocated document D. In addition to single-token words
being in the unigram model, multi-token named entities are
included. These were derived from Stanford NER’s 3-class
CRF model (Finkel, Grenager, and Manning 2005).

We use an Epanichnikov kernel (Ord and Getis 1995;
O’Sullivan and Unwin 2010) and a distance threshold of 100
km to define the weight w;; between a grid point 7 and a doc-
ument location j.
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This weights the importance of particular documents at lo-
cations j to their near grid points 7. When used in the G;*of
equation 1, the kernel has the effect of smoothing the contri-
butions from each document according to their nearness to
1, the current cell under consideration.

The output of the local statistic calculations is a matrix
of statistics with grid cells as columns and each word as a
row vector g* (). The G statistic serves primarily to cre-
ate a geographically aggregated and smoothed likelihood of
seeing each word at certain points in geographic space.

In practice the G statistic can be run directly from the
points in the observed documents, or it can be calculated
from points in a regularized grid. We use the the latter to re-
duce the computational cost of calculating G;* for all words.
A grid of .5° geographic degree spaced points was created,
beginning with a point at latitude of 70° N proceeding down
to -70° S. The grid was clipped to only include points within
.25¢ of land mass. In total, the grid used for this study rep-
resents 60,326 unique points on the earth.

Because more prominent senses of a place name are repre-
sented in more documents, clustering based on regional lan-
guage models derived from a source like Wikipedia is likely
to show preferences for prominent senses of a place name
without being overly tied to a specific aspect of a place (e.g.
administrative level or population). This is seen in the inter-
polated heat map of the local G;* clusters for Washington
in Figure 2. Washington has strong clusters around Wash-
ington state and Washington DC, with a slight preference

wij = .75(1 — ( )2){dist(i,j)§100km} )



Figure 2: Left: Local G;* values for Washington. Right: interpolated G;* values for Washington + Seahawks.

toward the latter in an empty context. However, this pref-
erence changes in contexts favorable towards other senses
(e.g. Seahawks in the context shifts towards the state refer-
ent). TopoCluster code and precomputed local statistic cal-
culations are available online 2.

Domain adaptation: Because the local G;* statistic is
bounded between 0 and 1, it is straightforward to adapt it
to new domains and new data with a simple linear interpola-
tion of values derived from different corpora.

g_;k =A g_:kInDomain + (1_>‘) g_:kG'eoWiki (3)

We run several experiments to test the importance of domain
adapting G;* values. For each corpus (TR-CoNLL, CWar,
and LGL), we construct pseudo-documents from its devel-
opment set by converting each toponym and the 15 words
to each side of it into a document. Each pseudo-document
is labeled with the latitude-longitude pair of the corpus an-
notation for the toponym, which allows us to train domain-
specific regional unigram language models.

Resolution: To disambiguate a toponym z, we separate
the toponyms ¢ from non-toponym words x in that z’s con-
text window c¢ (15 words on each side, filtering out function
words). We then compute a weighted sum of all the g* val-
ues of the toponyms ¢ and words z in c.

g (2, ¢) = 01g%(2) + 0, Z g*(t) + 03 Z g(z) @)

tece xTEC

The parameters 61, 62, and 63 weight the contribution of the
main toponym, other toponyms and the generic words, re-
spectively. The chosen location is then the grid cell ¢ with the
largest value in g*(z, ¢), which represents the most strongly
overlapped point in the grid given all words in the context.
Weights are decided on a per domain basis, based on a train-
ing procedure described in section on toponym weighting.
TopoClusterGaz: The output of the above disambigua-
tion process is gazetteer-free: a single point i representing
a cell in the grid is produced. However, we can restrict the
prediction to a gazetteer by forcing place names to match ti-
tle case and primary names, alternate names, and 2-3 letter

https://github.com/grantdelozier/
TopoCluster
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abbreviations contained in our Geonames-Natural Earth hy-
brid gazetteer. Reference for the toponym is snapped to the
gazetteer entry that matches the term in one of these fields
and has geometry closest to the most overlapped point 4.

Self-training using metadata: Documents often con-
tain metadata that is useful for toponym resolution (Lieber-
man and Samet 2012). One such feature is domain locality,
wherein certain geographies are weighted according to their
correspondence with the spatial extent of a document’s in-
tended audience. This typically requires explicit correspon-
dence with such metadata at test time (e.g. ‘publisher’ or
‘domain’) and also requires additional training annotations
corresponding to an oracle geolocation for a publication’s
place of focus. As such, they do not easily generalize to all
use cases; nonetheless, their usefulness is naturally of inter-
est, particularly in very localized datasets such as LGL.

We explore use of a very limited domain locality fea-
ture through a self-training procedure which only uses the
name of the publication at train and test time. For every pub-
lisher (e.g. theparisnews.com, dallasnews.com), TopoClus-
terGaz is run on all documents. The predictions are then fil-
tered to only include references to countries, regions, states,
and counties. This filtered set of toponyms is then associ-
ated with the publication domain. Later, when toponyms in
the respective local domains are disambiguated, our system
injects the domain’s associated country, region, state, and
county toponyms, applying the 6> weight used with other
toponyms in the text context. In this way, we use very lit-
tle manually specified knowledge to bootstrap and exploit a
characterization of the domain.

Experimental Setup

We consider both TopoCluster and TopoClusterGaz
(which uses a gazetteer), and we compare using domain
adaptation (A>0) or not (A=0). These are compared to two
gazetteer-based baselines: Random, which randomly se-
lects an entry from the possible referents for each toponym,
and Population, which selects the entry with the greatest
population (according to the gazetteer). We also compare to
six of the systems of (Speriosu and Baldridge 2013):

o SPIDER: a weighted spatial minimization algorithm that
selects referents for all toponyms in a given text span.

o TRIPDL: a document geolocation model that predicts the



Figure 3: Domain adaptation: optimizing X for each corpus. Left: TR-CoNLL, Middle: CWar, Right: LGL.
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probability of a referent being in a grid cell given a docu-
ment, restricted to valid cells according to a gazetteer.

e WISTR: a discriminative classifier per toponym, trained
using distant supervision from GeoWiki.

e TRAWL: a hybrid of WISTR and TRIPDL with prefer-
ences for administratively prominent locations.

o WISTR+SPIDER and TRAWLA+SPIDER: two combi-
nations of spatial minimization with classification.

Other systems of interest include (Santos, Anastacio, and
Martins 2014) and (Lieberman and Samet 2012). However,
direct comparison with those is challenging because they ex-
ploit metadata features, such as a hand-annotated indicator
of a newspaper’s geographic focus (Lieberman, Samet, and
Sankaranarayanan 2010), that are not available in the ver-
sion of LGL we have. We compare where possible, but our
primary focus is resolution using only the text, in large part
because we are interested in resolution on historical corpora
such as CWar, which do not have such metadata available.

Evaluation Metrics

Simple accuracy gives the number of correctly resolved to-
ponyms out of all gold-standard toponyms. This is problem-
atic because not all systems use the same gazetteer. Because
of this weakness, other metrics emphasize the distance from
predicted to true locations rather than identity of gazetteer
entries, and are thus gazetteer-independent. These are stan-
dard in document geolocation, where three primary metrics
are used: mean error distance, median error distance and
accuracy within 161 kilometers (A@161) (Leidner 2008;
Eisenstein et al. 2010; Wing and Baldridge 2011; Speriosu
and Baldridge 2013; Santos, Anastdcio, and Martins 2014).

It is also important to measure the coverage of TR sys-
tems. Recall has typically been a problem for TR systems
because of incompleteness of gazetteers and spelling vari-
ants of toponyms, which means that many candidate to-
ponyms are not resolved. One of our goals with TopoCluster
is to handle such candidates well and push up recall, which
is rarely measured in other toponym resolution work.

Parameter tuning

Toponym Weighting: A grid search was run on the dev por-
tions of the datasets to derive values of three parameters 61,
65, and 63 corresponding to weights on the ¢* of the main

Table 1: Toponym Weights Resulting from Gridsearch.

Dataset Resolver 01 60, 05
TR-CoNLL | TopoCluster 40 1 05
TR-CoNLL | TopoClusterGaz | 40 1 0.5
LGL TopoCluster 20 5 1
LGL TopoClusterGaz | 10 5 1
CWar TopoCluster 40 1 1
CWar TopoClusterGaz | 40 1 1

toponym, context toponyms, and other context words, re-
spectively. The search was performed by running the dis-
ambiguation procedure on 80/20 splits of the dev set using
a closed set of parameter values ranging from .5 to 40. Per-
formance of the theta combinations was then averaged over
the splits. The combination that produced the lowest aver-
age kilometer error scores for the respective models were
then selected for future runs on the corpus. Table 1 shows
the values obtained for the respective Model-Domain com-
binations. The weights for CWar and TR-CoNLL are very
similar, with very strong preferences being shown for spa-
tial statistics of the main toponym. The weights obtained for
LGL show more balanced preferences for the clusters asso-
ciated with both the main and context toponyms.

Domain Adaptation: We also determine values for the
N's of Equation 3 by varying them from O to 1 and mea-
suring A@161, again on 80/20 splits of the dev portions.
An average was taken of the accuracy over the 5 splits and
is depicted in Figure 3. In five of six cases, TopoCluster
benefits from domain adaptation; the exception is when us-
ing gazetteer matching on TR-CoNLL. This is unsurprising
since TR-CoNLL is the corpus most similar to the back-
ground GeoWiki corpus and it contains many large, discon-
tinuous geographic entities (e.g. states, countries) that are
poorly represented as single points. Predictions for such ge-
ographic entities constitute a large portion of changes as the
in-domain A increases. Both CWar and LGL constitute sub-
stantially different domains; for these, A values that equally
balance the in-domain and GeoWiki models are best.

Toponym resolution results

Table 2 shows test set performance for all models when
resolving gold-standard toponyms. The base TopoCluster
model (trained only on GeoWiki and not using a gazetteer)
performs relatively poorly, even on TR-CoNLL. However,
when combined with in-domain data, it ties for best perfor-
mance on CWar (A@161 of 93.1) and is competitive with



Table 2: Toponym resolution performance of all models using gold-standard toponyms.

TR-CoNLL CWar LGL
Resolver Mean Median A@161 | Mean Median A@161 | Mean Median A@161
Random 3891 1523.9 384 | 2393 1029 134 | 2852 1078 26.1
Population 219 30.3 90.5 | 1749 0.0 62.0 | 1529 38 62.7
SPIDER 2175 40.1 65.3 266 0.0 67.0 | 1233 16 68.4
TRIPDL 1488 37.0 72.9 848 0.0 60.2 | 1311 46 60.9
WISTR 281 30.5 89.1 855 0.0 733 | 1264 27 64.0
WISTR+SPIDER 432 30.7 87.4 201 0.0 87.1 830 3 71.7
TRAWL 237 30.5 89.7 944 0.0 70.8 | 2072 324 46.9
TRAWL+SPIDER 300 30.5 89.1 148 0.0 88.9 873 6 74.4
TopoCluster x—g 560 122 53.2 1226 27 68.4 1735 274 45.5
TopoCluster \— ¢ (.5,1.61) 597 20 85.2 141 22 93.1 | 1029 28 69.0
TopoClusterGaz »—g 209 0.0 93.2 | 1199 0.0 68.7 | 1540 1.5 61.4
TopoClusterGaz x—.¢ (.5,LGL) 351 0.0 91.6 120 0.0 93.1 | 1228 0 71.4
others for TR-CoNLL (85.2) and LGL (69.0). Furthermore, Table 3: TR-CoNLL performance with predicted toponyms.
this strategy is more effective than TopoClusterGaz without
domain adaptation on both CWar and LGL, though vanilla Resolver P R F
TopoClusterGaz does obtain the best performance on TR- Random 264 192 222
CoNLL. This is mostly likely due to two factors: GeoWiki Population 717 520 60.2
is a good match for the international news domain of TR- SPIDER 49.1 356 413
CoNLL and the GeoNames gazetteer was one of the main TRIPDL 51.8° 375 435
resources used to create TR-CoNLL (Leidner 2008). WISTR 739 536 621
TopoClusterGaz with domain adaptation is the best over- WISTR+SPIDER ¢ 732530 615
all performer across all datasets. It beats the best models of TRAWL 72.6 526 610
Speriosu and Baldridge for both TR-CoNLL and CWar by TRAWLASPIDER;o | 72.4 525 608
large margins. LGL proves to be a more challenging dataset: TopoCluster )= 75.1 840 793
TopoClusterGaz is second (by a large margin of 6 absolute TopoCluster y=o 467 522 492
percentage points), to WISTR+SPIDER. This indicates an TopoCluster-Gaz o | 81.9 91.6 86.5

opportunity for further gains by combining TopoCluster and
SPIDER. We also performed the self-training technique de-
scribed previously to see whether bootstrapping information
on metadata can help. It does: TopoClusterGaz with domain
adaptation and self-training obtains A@161 of 75.8 on LGL,
near the 77.7 of WISTR+SPIDER. It also easily beats the
77.5 A@250 obtained by Santos et al. (2014).

Table 3 shows final performance scores for versions of
TopoCluster run using an off-the-shelf NER on simple to-
kenized versions of the TR-CoNLL corpora. In this com-
bined system evaluation, large differentiation is seen be-
tween the models of Speriosu and Baldridge (2013) and
our own, with the largest differences being seen in the Re-
call metric—though some of the difference likely comes from
Speriosu and Balridge’s use of OpenNLP NER as opposed to
TopoCluster’s use of Stanford NER. This large difference in
Recall is in part due to our model’s non-reliance on gazetteer
matching. This makes it possible for TopoCluster to make
correct resolutions even in cases when the NER output uses
a non-standard place name variant (e.g. Big Apple for NYC)
or when slight errors are made in tokenization or NER (e.g.
NYC. is output as opposed to NYC). TopoCluster succeeds in
these cases because language models typically include these
variants, and their distributions pattern in ways that are sim-
ilar to the more commonly occurring dominant form. The
advantage of our models in the combined NER and TR eval-
uation matters because almost all real-world use cases of TR
apply to toponyms identified by a named entity recognizer.

Error Analysis: TopoCluster’s most common errors on

LGL were for Russian, American, Sudanese, Athens,Sudan
and Iran; for TR-ConLL they were Sakai, Malaysia, Kash-
mir, Iran, Nigeria and Sweden. Overall, the most prob-
lematic items for TopoClusterGaz were demonyms. Such
expressions—which are usually not included in toponym
corpora—are hard for a few reasons. First, the most signifi-
cant G;* clusters associated with demonyms tend to be ei-
ther near capitals or highly populated places, while corpus
annotations in LGL geo-reference these entities as a cen-
troid for the large, discontinuous geography associated with
its residents. Gazetteer matching fails in these cases because
demonyms are not listed as alternate names for countries in
Geonames. Also, the demonym string is at times identical
to a toponym associated with a different referent, e.g. a city
in Venezuela named Russian is the only toponym reference
for Russian in Geonames. Highly ambiguous toponyms like
Athens are of course inherently challenging.

Gazetteer independent models make their largest errors on
large geographic entities (e.g. countries). TopoCluster y— ¢
for example will typically geo-reference Sweden as point
near Stockholm, while the oracle TR-CoNLL annotation in-
dicates a point much further north at the geometric center of
the country. Similarly, Sudan often resolves to a point near
Khartoum and not the geographic center of the country. Such
resolutions are not incorrect so much as different geographic
representations of the same entity.



Conclusions

Our toponym resolvers perform well on international news
and historical corpora, beating other state-of-the-art re-
solvers by large margins. Gazetteer-independent versions
of our models perform competitively with many high per-
forming resolvers, and TopoCluster works especially well
on predicted toponyms—which is arguably the key use case
for toponym resolution in the wild. Further improvements
could be made on TopoCluster by combining with a spatial
minimization algorithm like SPIDER, and by learning (e.g.
via logistic regression) fine-grained per-word/per-toponym
weights rather than using a grid search over three coarse pa-
rameters.

The results of the gazetteer-independent models call into
question whether gazetteer matching is truly an essential
component of a toponym resolution process. Theoretically,
gazetteer matching could do significant work correcting a
completely wrong output of a non-gazetteer utilizing model
like TopoCluster, particularly in cases where a toponym
string is unambiguous in a gazetteer. Empirically however
we found these cases to be extremely rare—the primary ben-
efit of the gazetteer in our models was ontology correction
of large geographic entities and not disambiguation. We sus-
pect that our results and those of others would change signif-
icantly if more complex, multi-polygon annotations would
have been given for gold toponyms in annotated corpora.
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