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Abstract

Automatically identifying the arguments of discourse
connectives (e.g., and, because, however) is an important
part of modeling discourse structure. Previous work used a
single, general classifier for different connectives; however,
connectives differ in their distribution and behavior, so con-
flating them this way loses discriminative power. Here, we
show that using models for specific connectives and types
of connectives and interpolating them with a general model
improves performance. We also describe additional fea-
tures that provide greater sensitivity to morphological, syn-
tactic, and discourse patterns, and less sensitivity to parse
quality. Our best model achieves a 3.6% absolute improve-
ment over the state-of-the-art on identifying both arguments
of discourse connectives when using features from gold-
standard parses, and a 9.0% improvement when using au-
tomatically produced parses.

1 Introduction

Automated analysis of discourse structure for raw text
is a challenging but important problem. For example, de-
termining the full discourse structure of a text has uses in
practical applications such as generation [11], text summa-
rization [17], and automated essay evaluation [10]. In this
paper, we consider discourse connective argument identi-
fication, a subtask of determining full discourse structure
that involves identifying the arguments of explicit discourse
connectives. Connectives are words with rhetorical func-
tions such as and, because, and however; their arguments
are the text spans that they relate. For example, in the sen-
tence John left because he was mad, the first argument of
because is John left and the second is he was mad.

Accurate identification of the arguments of connectives
could be useful for many semantic computing tasks in ad-
dition to those mentioned above, including sentiment anal-
ysis, textual entailment and temporal reasoning. In essence,
they can act as a lightweight approximation of a full rhetor-

ical analysis that can inform models for other tasks. For
example, knowing that a particular connective relates two
text spans could be used in the structured model of senti-
ment analysis of [19] to define a small set of rhetorically im-
portant dependencies beyond simple adjacency. Also, con-
nectives include conditionals like if and negation (e.g., not)
that affect monotonicity of inferences in textual entailment
[14]. Finally, many discourse connectives–such as then and
after–relate their arguments temporally: connective argu-
ment identification can thus aid in the prediction of when
the events evoked by those arguments occur with respect to
one another, e.g., in an approach such as that of [16].

Following Wellner and Pustejovksy (2007) (henceforth,
W&P), we use the Penn Discourse Treebank (PDTB, [20,
22]), a layer of annotations for discourse connectives and
their arguments over the Wall Street Journal portion of the
Penn Treebank [18]. W&P use maximum entropy rankers
combined with a reranking step to jointly select the two ar-
guments of each connective. Their best results show that
this strategy works well but leaves much room for improve-
ment on identifying first arguments.

In this paper, we improve on W&P’s results by us-
ing models tuned to specific connectives and connective
types (subordinating conjunctions, coordinating conjunc-
tions, and discourse adverbials). Like W&P, we use maxi-
mum entropy rankers. They use a single model that handles
all connectives. This allows it to capture the general behav-
ior of all connectives, but it ignores the fact that different
connectives, and in particular, different types of connectives
behave differently. For instance, syntactic constituency re-
lationships generally hold between coordinating and sub-
ordinating connectives and their first argument spans, but
adverbial connectives find their first arguments anywhere in
the prior discourse. A general model will have difficulty
resolving the tension on certain features, such as distance,
since adverbials will express a preference for further attach-
ments while the others will prefer closer ones.

Specialized models that capture the distribution for a
given connective or type of connective do not have to deal
with such possibly conflicting evidence from the events for
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other connectives. We show here that these specialized
models do indeed improve performance for this task, simi-
larly to using specialized models for different types of men-
tions in automated coreference resolution [7]. However,
the general model does have access to more training in-
stances, so we interpolate the specialized models with this
one to create a combined model that takes advantage of the
strengths of both strategies.

We also describe new features that improve performance
over those used by W&P. Our additional features encode
(1) morphological properties of connectives and their argu-
ments, (2) additional syntactic configurations, and (3) the
wider context of preceding and following connectives. The
latter help create more coherent assignments by indirectly
adding greater sensitivity to other decisions.

2 The Penn Discourse Treebank

Several annotated corpora for discourse structure have
been created and used for creating discourse parsers [5, 28,
2]. These resources assume an underlying theory of ab-
stract discourse relations, such as Elaboration, Explanation,
and Narration. They also assume that discourse structure is
encompassed by some specific sort of directed graph (e.g.
trees [5] versus more general acyclic graphs [2] versus fully
general graphs [28]). The goal of parsers for these resources
is to identify how different utterances, or elementary dis-
course units, are hierarchically connected to one another via
these relations. Despite these efforts, there is still no gen-
eral agreement as to what constitutes an adequate represen-
tation of discourse structure, especially for annotating texts.
The issues include determining a precise set of discourse
relations, questions about whether trees are adequate, and
whether it is necessary to use underspecified representations
of discourse structure.

The Penn Discourse Treebank (PDTB, [20]) is another
annotated resource that circumvents such issues. The de-
sign of the PDTB seeks to retain a close link between the
representation being constructed and the text being anno-
tated. The focus is on explicit connectives— which signal
discourse relations—and the spans of text which are the ar-
guments of those connectives. The argument structure of
each connective is strictly binary and non-recursive. This
produces a shallow representation that can be annotated re-
liably, in large part because it remains tightly connected to
the text itself and does not posit higher level structure. It
also makes it straightforward to evaluate performance on
discourse connective argument identification.

Knott (1996) provides an extensive study of discourse
connectives and their properties[13]. An important dimen-
sion on which they vary is their syntactic type: subordi-
nating conjunctions, coordinating conjunctions, discourse
adverbials, prepositional phrases, and phrases taking sen-

Coordinating Subordinating Other
and because afterwards
or when previously
but since nonetheless
yet even though actually
then except when again

Table 1. Examples of connectives, grouped
by syntactic function (from [13]).

tence complements [23]. Examples of connectives grouped
by syntactic types are given in Table 1.

To see how different connectives behave differently, it
is useful to consider some actual examples and their anno-
tations from the PDTB. We follow the labeling convention
used in W&P, which adds head identification to the standard
PDTB conventions: the connective is in a box , ARG1 in
italics, ARG2 in bold, and head words of each argument are
underlined. The following examples show coordinating (1),
subordinating (2), and discourse adverbial (3) connectives
and their arguments as annotated in the PDTB:

(1) Choose 203 business executives, including, perhaps,
someone from your own staff, and put them out on the
streets, to be deprived for one month of their homes, fam-
ilies, and income.

(2) Drug makers shouldn’t be able to duck liability because
people couldn’t identify precisely which identical drug
was used.

(3) France’s second-largest government-owned insurance
company, Assurances Generales de France, is building
its own Navigation Mixte stake, currently thought to be
between 8% and 10%. Analysts said they don’t think it
is contemplating a takeover, however , and its officials
couldn’t be reached.

Subordinating and coordinating connectives are typically
connected to both of their arguments syntactically in the
same sentence or their argument is in the immediately pre-
ceding sentence: they are structural [26]. Adverbials, on
the other hand, can be anaphorically linked to their ARG1,
as is clear in (3). It is exactly this kind of difference that
suggests different models for different types of connectives
should help.

Annotators dealt with each connective independently. As
a result, two connectives can have interleaved, overlapping
arguments. For example, the connectives because and then
occur next to one another in the following passage; the
ARG2 of because subsumes that of then while the ARG1
of then is before that of because:
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(4) John loves Barolo. He ordered three cases of the ’97. But
he had to cancel the order because then he discovered
he was broke.

(5) John loves Barolo. He ordered three cases of the ’97. But
he had to cancel the order because then he discovered
he was broke.

Some of our new features help capture such overlaps. For
example, we include features that state the previous and fol-
lowing connectives and whether or not there is overlap in
their candidates and those for the current connective.

It is important to select a word with some syntactic mo-
tivation to represent an argument span, but due to the lack
of consistent alignment between syntax and discourse, we
must enforce a syntactic relationship between the various
nodes in the span forest. Following W&P, we find the least
common ancestor (LCA) node which governs all terminal
nodes within the argument span and evaluate on correctly
selecting the terminal head of the LCA.

3 Models

There are two stages in identifying the arguments of
a discourse connective: the heads of candidate arguments
must be identified and then the best candidate must be cho-
sen. For the first stage, W&P select candidates only within
a distance of ten steps of the connective. A step is defined
as the traversal of a sentence boundary or dependency link.
The heuristic may traverse sentence boundaries for ARG1S,
but stays within the same sentence as the connective for
ARG2S, which are generally syntactically dependent upon
the connective. This prunes the number of candidates which
must be considered during classification.

To identify the best candidates, W&P use a maximum
entropy ranker with a large feature set which considers syn-
tax, dependency, and lexical semantics. Maximum entropy
models are widely used for classification tasks in natural
language processing—they are accurate, can incorporate
non-independent, overlapping features, and are reasonably
fast to train. The advantage to using rankers (as opposed to
classifiers) for this particular task is that in the set of can-
didates generated, we may assume there is only one correct
answer. The model considers all candidates for a given con-
nective simultaneously and selects only one candidate. A
classifier for this task would have to consider each candi-
date independently, predicting “Yes this is an argument” or
“No, it isn’t” for each—similarly to the standard classifica-
tion approach for coreference resolution [25]. Rankers have
been shown to improve accuracy for tasks with a similar
structure, such as question answering [24], pronoun resolu-
tion [8], and coreference resolution [7].1

1A common point of confusion is how rankers differ from classifiers.

In the composition of the PDTB, there cannot be more
than one first argument and second argument for a single
connective, so ranking is thus a good fit for this task as well.
Like W&P, we also use a maximum entropy ranker. Models
are trained for ARG1 and ARG2 selection separately. The
model for ranking with respect to the identity of a candidate
head αi as an argument head α̂ given a connective π and a
document x is:

Pα̂(αi|π, x) =
exp(

∑
k λkfk(αi, π, x))∑

αj∈Cα̂(π,x) exp(
∑

k λk(αj , π, x))
(1)

where the fk are feature functions, the λk are their respec-
tive weights, and Cα̂(π, x) is the set of candidate arguments
for connective π within a document x. During the train-
ing phase, the incorrect alternatives for this discriminative
model are sampled as in W&P: all candidates within ten
steps of the connective, as mentioned above. During test-
ing, the same criterion is used for identifying the candidate
set; the chosen candidate is then that which has the high-
est probability according to (1). For the rest of this paper,
we refer to this approach as the general connective model,
or GC. The number of training instances coincides with the
number of connectives in the training set.

We use the Toolkit for Advanced Discriminative Model-
ing2 [15] to determine weights for this model and the spe-
cialized models described in the next two sections. For all
models, we use a Gaussian prior with a variance of 100,
determined on the development set.

Connective Specific Models. Discourse encompasses
many levels of analysis (e.g., lexical semantics, pragmatics,
temporal semantics, and world knowledge), so we consider
the value of training models specific to the connective in
question so as to better model their individual properties.
For example, then typically relates two temporally related
arguments whereas but usually contrasts two propositions
regardless of temporal considerations.

For each individual connective, we train models using all
its instances. During testing, the prediction for a connective
is determined by the specific model trained for it and no
others. In a few cases, a connective unseen in the training

The main difference is that all candidates are considered together in a sin-
gle decision. The features in a classifier are a combination of a contextual
predicate, like candidate head=Choose and a class label, like Yes: so
the resulting feature is (Yes,candidate head=Choose). A decision is then
about a single candidate with respect to how the contextual predicates iden-
tified in it pair with the different labels in consideration. In a ranker, the
contextual predicate is the feature, and multiple candidates are compared
together. A consequence of this is that items in a ranking decision can have
features in common, whereas those in classifiers are disjoint. For example,
in a parse selection task [3], several parses of a sentence might share a
feature that encodes the fact that the S→ NP VP rule was used.

2http://tadm.sf.net
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material occurs in the test material; for such cases, the GC
model is uses as a backoff model. We refer to the collection
of connective specific models as SC.

Type Specific Models. Connectives link arguments in pri-
marily three different ways [13]. Coordinating connectives
(i.e. and) assume argument spans are generally syntacti-
cally similar. Subordinating connectives (i.e. because) are
dominated or adverbially linked to the ARG1 and dominate
the ARG2. Adverbial connectives (i.e. nonetheless) can
appear in several places in the sentence and have no neces-
sary syntactic relationship to their ARG1. Because of this
tendency, this subset of connectives more closely mirrors
the task of coreference resolution. As a result, we explore
modeling each set independently to more closely reflect the
differing behaviors of each connective group. Connective
types are determined from the list of connectives and their
properties given in Appendix A of [13]. As a default, any
connective not mentioned there is assumed to be adverbial.
This arrives at a slightly different frequency of the three
types than outlined in W&P, but stays fairly close to the
distribution amongst all types. We refer to this set of (three)
models as the type connective model, or TC.

Interpolated Models. The more specific models de-
scribed in the previous sections trade off precise model-
ing of the distribution for specific connectives or types of
connectives with the extra evidence (and larger training set)
available with the GC model. We thus combine models of
different specificity using standard linear interpolation as
a simple way of getting the benefits of both. We use two
different interpolated models: (1) TC with GC and (2) SC
combined with the interpolation of TC and GC:

PTG(a|ci) = λti
Pti

(a) + (1 − λti
)Pg(a) (2)

PSGT (a|ci) = λciPci(a) + (1 − λci)PTG(a|ci) (3)

where a is a candidate argument, ci is the specific connec-
tive under consideration, Pci is the specialized model for
connective ci, ti is the type of that connective, Pti is the
model for that type, Pg is the general connective model, and
λci and λti are interpolation weights for connective ci and
connective type ti, respectively, controlling the influence of
the more general models.

The interpolation weights λci
and λti

are determined in
a very simple manner that ensures that connectives or types
which have been seen fewer times leave more mass for PTG

or PSGT , respectively. For example:

λci
=

freq(ci)
freq(ci) + C

(4)

C is a constant chosen based on performance on held-out
development data. λti is set similarly. For λci , we set C at

99, the number of different connectives in the corpus. For
λti , C is set as 3, the number of different connective types.

More complex model combinations could of course be
used. Nonetheless, we find that this simple approach works
well with these base models and is robust to many different
values of C for both connectives and connective types.

Why use specific models? One reviewer wondered about
the connection between specialized models and other com-
mon natural language processing tasks: e.g., why are word-
specific models not used for part-of-speech tagging, where a
general model is used and features always include the word
itself? Actually, basically all POS taggers do use a word-
specific model, albeit in the form of a tag dictionary. Tag
dictionaries restrict the possible tags that can be assigned
to a word to be only those tags that have been seen with
that word in training. In effect, the tag dictionary acts like a
word-specific model in that it is a hard filter on what the tag-
ger can assign to each seen word. However, it should also
be noted that tasks like the one considered here are quite
different from POS tagging in that they do not involve se-
lecting a label from a small predefined set, but instead in-
volve relating arbitrary text spans. They are thus far more
unconstrained, and as we have argued based on the data,
they behave differently in terms of the spans they associate
with and the distance with which they find their arguments.
This is similar to coreference, where pronouns are usually
coreferent with a noun phrase in the current or preceding
sentence, but proper nouns are often coreferent with other
mentions that are many sentences away [7].

The most extreme case of the use of specialized models
is word-specific models for word-sense disambiguation [12]
where the possible set of senses (the labels to be predicted)
is different for each word. Creating general models is ac-
tually quite challenging and there are very few approaches
that go beyond the word level; nonetheless, improvements
have been achieved by learning correlations across the pre-
dictions for different words [1].

4 Features

Discourse tasks such as connective argument identifica-
tion are influenced by many aspects of the text and its un-
derlying content. W&P use a wide-range of features that
encode aspects of the surface text, such as the connective
string itself, phrase structure and dependency path informa-
tion, and some lexical semantics with respect to the behav-
ior of the candidate and connective.

Many other features can be extracted for the task. We
consider an additional set that attempts to account better for
the prediction of one connective based on other neighboring
connectives and that would be especially useful for models
for specific connectives or connective types. We also use
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α Previous connective string
β Following connective string
γ Connective in quotes
δ Candidate in quotes
ε γ & δ
ζ γ & δ AND same quote
η Word to the left of the candidate
θ Word to the right of the candidate
ι Word to the left of the connective
κ Word to the right of the connective
λ The unique set of node labels in the constituent path
µ Lemmatized candidate
ν Inflection features of candidate (-ing/-ed, etc.)
ξ Candidate a constituent of another connective
o Candidate argument position in dependency graph
π Connective argument position in dependency graph
ρ Candidate in a copular sentence (boolean)

Table 2. Additional features.

morphological stemming and additional syntactic features
not considered by W&P. In part, we seek to provide greater
robustness to the disconnect between syntactic constituents
and connective arguments in the PDTB [9].

We modify or do without some of W&P’s features, based
on performance observed on the development material, as
follows. Directional information for constituent paths is
omitted, making the features simply serial part-of-speech
strings. Collapsed constituent path without part-of-speech
(their feature J) is removed. This is replaced by the path of
constituent lexical heads from the candidate to the connec-
tive. This helped particularly in improving ARG1 scores on
the development data.

Our additional features are summarized in Table 2. Be-
cause a ranking instance occurs for each connective with
all candidate heads considered at once, there is more room
to consider dependencies between features. This is par-
ticularly important for cases of time-sensitive connectives,
where a connective such as seven months after would most
likely not have an ARG1 in the present tense and an ARG2
in the past tense.

Features α through κ are intended to introduce a higher
level of context-sensitivity using simple, surface-level cues.
Depending on the surroundings of the connectives, there
may be preferences for different types of arguments which a
model dealing with a specific connective or type of connec-
tive might more easily capture. This is also the reasoning
behind feature σ: certain connectives are unlikely to take
copular arguments. Similarly for feature λ; certain phrasal
nodes may block well-formed candidate heads within the
discourse–for example, a subordinate or adverbial clause.

Features γ through ζ deal with within-quotes discourse
as opposed to document-level discourse. In some ways,
these features are elaborations on W&P’s feature U, regard-

ing whether the candidate is an attributing verb: they may
help to block narrative document-level discourse from be-
ing related to discourse stemming from a specific speaker
whose dialogue is being directly attributed.

The output of the morpha lemmatizer [21] is used for
several features to allow generalization over lemmata as
well as introduce weak tense-based features as relations be-
tween the first and second argument, as in feature ν. This is
an important aspect to include as a weak indicator of tempo-
ral factors, which should help for connectives such as fully
eight months before, four days after, and ever since.

Feature ξ should discourage selection of head words
which are immediate constituents of other connectives.
These are much more likely to be ARG2s of other connec-
tives than first arguments of the connective in question.

In all, the additional features seek to capture a greater
degree of discourse-level context and should also be help-
ful for connective specific models. Features which consider
tense and adjacent connectives should improve sensitivity to
the greater discourse; intuitively, as a connective’s argument
selection behavior is a consequence of the full discourse,
this should improve performance.

5 Experiments

We use version 1.0 of the Penn Discourse Treebank. As
is standard when using the Wall Street Journal portion of
the Penn Treebank, we train on sections 02-22, develop on
sections 00 and 01, and test on sections 23 and 24. This
allows us to directly compare the performance of our ap-
proach to W&P. All models were developed on 00-01 and
run once on 23-24. Like W&P, we evaluate our approach
for both ARG1 and ARG2 identification and for identify-
ing both correctly (referred to as CONN accuracy). We also
break down performance in terms of connective types (see
section 3 for how we determined these types from [13]).

We also evaluate the performance of models on auto-
matically produced parses using the Bikel parser [4].3 The
parsed data for the training portion is created using 5-fold
training and labeling with the parser.

Results for ARG1, ARG2, and CONN accuracy for the
various models are given in Table 3 for gold parses and Ta-
ble 4 for auto-parses. Scores are given for W&P’s best sim-
ple ranking model (W&P-BASE) and their reranker (W&P-
RERANK). Our models are simple ranking models, like
W&P-BASE,4 and would all likely improve with rerank-
ing.5 A factor that is clear in all the models is that ARG2

3W&P obtained auto-parses from the Charniak parser [6].
4We replicated this model and obtained the scores reported by W&P.
5As with the classifier versus ranker question, there is at times confu-

sion between a ranker and a reranker. Rerankers take the n-best output of
a previous model (thus not considering all possibilities the first model did),
and typically take advantage of a wider range of features than the first did.
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selection is considerably easier than ARG1. This is unsur-
prising since ARG1 identification requires considering mul-
tiple sentences, and thus more candidates. In addition, as
the average distance between the connective and the can-
didate argument increases, features such as syntactic path
and dependency path between nodes becomes sparser and
less useful. Conversely, connectives generally have a direct
syntactic relationship with ARG2s.

Base model results: new features. Both of the W&P
scores use all of their features. By changing some of the
features and removing others, as described in Section 4, we
obtain a model, GC-W&P-REVISED, that has better ARG1
accuracy (78.1 vs. 75.0), worse ARG2 accuracy (91.8 vs
94.2), but is overall more accurate at getting both connec-
tives right (73.0 vs 71.7). When we add our additional
features (Table 2), performance improves on all measures
(indicated by the row for GC-ALL), and in particular the
CONN accuracy nearly rivals that of W&P-RERANK (73.9
vs 74.2). These results show the utility of our additional fea-
tures for ARG1 accuracy, but also demonstrate that W&P’s
original set is better for ARG2 identification. This suggests
that the two tasks should be tackled with feature sets tuned
to each, rather than a single feature set as W&P did and we
have done here.

As seen on Table 4, the models implemented here do
not suffer as severely using auto-parse data as W&P’s. One
likely explanation may be that the revised feature set re-
moves some of the constituency based features and adds
features that do not reference syntactic structure, thus re-
ducing reliance on parse quality. It is also possible that the
output of the different parsers, Bikel’s in our case and Char-
niak’s in W&P’s case, contributes to this difference.

Base model results: specialized models. The results for
the connective-type model, TC-ALL, shows that further
gains are made by using a model which treats each type
of connective separately. In particular, this improves ARG1
accuracy (by 3%, from 78.7 to 81.7). This is as expected,
since it is with respect to ARG1 that the different connec-
tive types behave most differently. As discussed in Sec-
tion 2, subordinating and coordinating connectives usually
find their ARG1s structurally, whereas adverbial connec-
tives find them anaphorically (and usually at a greater dis-
tance).

For example, in parsing, a generative model that uses very limited, local
features produces an n-best list of parses, and a reranker uses features that
span large portions of entire trees [6]. W&P use a ranker in the following
manner: their initial ranker predicts ARG1s and ARG2s separately, then an
n-best list of pairs of arguments is created by multiplying the probability
of each argument, and finally, the resulting n-best list creates a training in-
stance (with the gold-standard providing the truth) or a test instance to be
evaluated with the trained reranking model. This allows an approximation
of a joint model over both arguments. See W&P for more details.

Model ARG1 ARG2 CONN

W&P-BASE 75.0 94.2 71.7
W&P-RERANK 76.4 95.4 74.2
GC-W&P-REVISED 78.1 91.8 73.0
GC-ALL 78.7 92.1 73.9
TC-ALL 81.7 92.6 76.1
SC-ALL 80.3 93.1 75.8
TC-GC-INTERP 81.7 93.2 77.2
SC-TC-GC-INTERP 82.0 93.7 77.8

Table 3. Accuracy scores on gold-standard
parses.

Model ARG1 ARG2 CONN

W&P-BASE 67.9 90.6 62.7
W&P-RERANK 69.8 90.8 64.6
GC-W&P-REVISED 76.9 89.0 70.2
GC-ALL 77.1 89.1 70.2
TC-ALL 78.9 89.7 72.4
SC-ALL 78.7 85.4 68.4
TC-GC-INTERP 79.8 89.9 73.1
SC-TC-GC-INTERP 80.0 90.2 73.6

Table 4. Accuracy scores on Bikel parses.

The connective specific model, SC-ALL, does not do as
well as TC-ALL on ARG1, but is still better than the general
GC-ALL model. It is our best simple model on ARG2. This
suggests that TC-ALL is still too course-grained: ARG2s
are found in the same sentence, and both GC-ALL and
TC-ALL must have some connectives which overpower the
preferences of others. On the other hand, because ARG1s
are further away for adverbial connectives, TC-ALL may
be better able to use the evidence from all adverbial connec-
tives while not suffering from the great reduction in train-
ing instances incurred by SC-ALL (consider, for example,
that many connectives—especially the adverbial ones—are
found only once in the training material). In particular,
this means that the general problem of sparser features for
ARG1s is greatly aggravated in the SC-ALL model.

The most notable detail of the performance of special-
ized models on the auto-parse data is the decrease in per-
formance for SC-ALL. The weakest performance for this
model is among subordinating connectives (see Table 6).

Interpolated model results. Clearly, there is value in us-
ing more specific models, but they must be balanced by
more general models to protect against sparsity. The sim-
ple linear interpolation described in section 3 is a straight-
forward way to combine these models. As indicated by
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Model Subord. Coord. Adverb.
GC-W&P-REVISED 80.8 74.2 58.7
GC-ALL 80.9 75.5 59.8
TC-ALL 82.8 77.5 67.5
SC-ALL 83.9 78.0 59.0
TC-GC-INTERP 82.8 77.5 67.8
SC-TC-GC-INTERP 83.9 78.1 67.5

Table 5. Breakdown of CONN scores by con-
nective type on gold parses.

Model Subord. Coord. Adverb.
GC-W&P-REVISED 76.2 73.3 55.4
GC-ALL 76.9 73.5 54.0
TC-ALL 78.2 75.4 58.2
SC-ALL 67.9 77.4 53.2
TC-GC-INTERP 77.3 76.5 60.7
SC-TC-GC-INTERP 78.0 77.1 60.7

Table 6. Breakdown of CONN scores by con-
nective type on Bikel parses.

the row for TC-GC-INTERP, interpolating TC-ALL with
GC-ALL does help. In particular, ARG2 accuracy im-
proves from 92.6 for TC-ALL on its own to 93.2. Be-
cause ARG2s are more similar across the different types
of connectives, the interpolated model is able to incorpo-
rate additional—and more importantly, relevant, appropri-
ate, and more numerous—evidence from GC-ALL.

Interpolating the three levels together, SC-TC-GC-
INTERP, provides our best results. This combined model
can use SC-ALL when it has a specific connective that had
many training instances and thus can be modeled well by
the single specialized model while relying more on TC-
GC-INTERP for connectives which were observed just a
few times in the training material. (These contributions are
governed by the connective specific λci weights, as defined
in section 3). This model achieves the best performance
in all three metrics and provides a 3.6% relative improve-
ment over W&P’s reranking model. On auto-parsed data,
this model achieves a 9% improvement over W&P’s rerank-
ing model. We would expect to get even better results by
reranking the output of SC-TC-GC-INTERP.

Results by connective type. It is instructive to consider
the results for each of the models on CONN accuracy for
each different type of connective. This is given in Table 5
and Table 6 for gold parses and auto-parses, respectively.6

6Note that our connective type classification is slightly different from
W&P’s. In the test material, they counted 662 coordinating, 547 subordi-

The most salient number is 67.5 for adverbial accuracy for
TC-ALL. Clearly, this single model represents the most
important split in specialization since it allows the struc-
tural dependencies of subordinating and coordinating con-
nectives to be modeled differently from the anaphoric de-
pendencies of adverbials. It thus captures the longer dis-
tance adverbial ARG1s more accurately than GC-ALL. Al-
though SC-ALL also specializes (even further than TC-
ALL), it is hurt by subsequent sparsity since many of the
models that constitute it are trained on just a few examples.
TC-ALL thus provides a good balance between both ex-
tremes of GC-ALL and SC-ALL.

SC-ALL, on the other hand, does best of all single mod-
els for subordinating and coordinating connectives. As
mentioned above, sparsity is less of an issue for these
connectives since their arguments are usually found much
closer and in stricter syntactic relationships to them. Of
course, the interpolated models straightforwardly incorpo-
rate the benefits of all these strategies and perform better
across the three types than any of the single models.

6 Conclusion

We have shown that accuracy in identifying the argu-
ments of discourse connectives can be improved by building
models for specific connectives and/or different connective
types. These models allow the specific distributions for a
connective or connective type to be modeled more closely,
but suffer from not having as much training material as a
general model that uses all connectives. This is similar to
what has been found for specialized models for coreference
resolution [7], a task with a very similar structure. We ad-
ditionally show that the strengths of both the specialized
models and the general model can be realized by combin-
ing them with simple interpolation.

We also demonstrate the utility of additional features for
the task. These features use morphological analysis, fur-
ther syntactic patterns, and information about the distribu-
tion of other connectives in relation to the connective under
consideration. By using these new features and interpolat-
ing a connective specific model, connective type model, and
general model, we achieve 77.8% accuracy for identifying
both arguments of connective, a 3.6% absolute accuracy im-
provement over the state-of-the-art result of W&P [27].

An immediate way to improve our results is to use sep-
arately tuned feature sets for ARG1 and ARG2 identifica-
tion, as can be seen in the difference between W&P’s ba-
sic model and our revised version of their feature set: the
former does better on ARG2, whereas the latter is better
on ARG1. Our subsequent models—using specialization—
improve ARG1 accuracy using the same features as the lat-

nating, and 386 adverbial connectives; according to our connective types,
based on [13], there are 654, 577, and 366, respectively.
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ter, and they nearly rival that of W&P’s basic model for
ARG2. Thus, building on W&P’s features for ARG2 identi-
fication would likely improve the results of our specialized
models. And of course, we expect our best models would
additionally benefit from W&P’s reranking approach.
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