
Categorial Grammar, v2.5
Jason Baldridge and Frederick Hoyt

Note: This is a draft chapter for the Handbook of Syntax. Please cite as:

Baldridge, Jason and Frederick Hoyt. (to appear). Categorial grammar. In
Kiss, Tibor and Alexiadou, Artemis (eds.). Handbook of Syntax. Berlin: de
Gruyter.

The handbook is likely to be published in 2012. Email jbaldrid@mail.utexas.edu
with comments, corrections, or suggestions for this chapter.

Categorial grammar is an umbrella term for a family of grammatical for-
malisms which handle syntactic and semantic analysis via type-dependent anal-
ysis. Syntactic types and semantic interpretations are assigned to complex ex-
pressions that are compositionally determined from the types and interpreta-
tions of their subexpressions. Modern categorial grammar was first proposed
by Ajdukiewicz (1935) as his “calculus of syntactic connection.” It arose from
the theory of semantic categories developed by Edmund Husserl and the Pol-
ish school of logicians, which included Ajdukiewicz and Stanislaw Lesniewski
(Casadio, 1988). Bar-Hillel (1953) provided an order-sensitive formulation of
categorial grammar, and Lambek (1958) provided its first formulation as a logic.
Since then, categorial grammar has been extensively developed into variants that
have greater descriptive, explanatory and computational adequacy for dealing
with natural language grammar. This chapter focuses on the two current main
branches of categorial grammar: Combinatory Categorial Grammar (Ades and
Steedman, 1982; Szabolcsi, 1992; Jacobson, 1992b; Steedman, 1996a, 2000b;
Steedman and Baldridge, 2011; Steedman, 2012) and Categorial Type Logics
(also known as Type Logical Grammars) (van Benthem, 1989; Morrill, 1994;
Moortgat, 1997; Carpenter, 1998; Vermaat, 1999; Oehrle, 2011).

Compared with other grammar formalisms such as Head-Driven Phrase-
Structure Grammar (HPSG: Pollard and Sag (1994); Sag et al. (2003)) or
Lexical-Functional Grammar (LFG: (Kaplan and Bresnan, 1982)), categorial
grammars are extreme lexicalist formalisms, meaning nearly all grammatical
information is contained within the entries of the lexicon while syntactic deriva-
tion is modeled with a small set of very general rules. In this respect, categorial
grammars share common ground for proposals within the Minimalist Programs
(MP: Chomsky (1995)), according to which syntactic derivation involves a very
small number of rules operating over lexical categories richly specified with syn-
tactic information.

Another core property of CG frameworks is semantic transparency. Syntactic
category types (such as s\np) correspond directly to semantic types, typically
expressed as terms of the lambda calculus (such as λy.λx.[Pxy]). Meaning

1

assembly is therefore strictly compositional. Essentially, syntactic categories
simply constrain the linear order in which semantic functions can combine with
their arguments. Syntactic structure itself is simply an artifact of derivation,
not a level of representation (Steedman and Baldridge, 2011).

Typically, CG frameworks allow for much freer surface constituency than
is typically assumed in context-free grammar formalisms (as well as in Aj-
dukiewicz’s original formalism). This provides straightforward analyses of many
interesting problems in syntax, including unifying analyses of unbounded con-
structions such as coordination and relative clause formation, an analysis of
intonation structure as part of surface syntactic derivation, and algorithms that
allow for incremental processing as a part of syntactic derivation with the com-
petence grammar.

This chapter presents the very earliest form of categorial grammar, the AB
calculus (Ajdukiewicz, 1935; Bar-Hillel, 1953), and then discusses predominant
modern categorial grammar frameworks in a way that emphasizes their similar-
ities rather than their differences. The AB calculus provides an intuitive and
particularly simple example of categorial grammar that allows many of the core
intuitions and mechanisms of the approach to be explicated in terms that will
be more familiar to newcomers than its modern descendants.

Throughout the discussion, examples are provided of some of the linguistic
analyses which have been proposed for phenemona such as long-distance rela-
tivization, right-node raising, argument cluster coordination, and parasitic gaps.
Finally, brief discussion is provided of generative capacity, the connections to
other frameworks, and recent computational work based on categorial grammar.

1 The Ajdukiewicz-Bar-Hillel Calculus

The common starting points of categorial grammar formalisms are Ajdukiewicz’s
(1935) syntactic connection calculus and Bar-Hillel’s (1953) directional adapta-
tion thereof. It is thus generally referred to as the ab calculus. It has two
components: categories and rules.

Syntax: Categories may be either atomic categories (such as s for sentences
and n for nouns) or complex categories which are functions defined over atomic
categories and/or other complex categories. Complex categories directly en-
code the subcategorization requirements of the expressions they are associated
with, along with specifications of the linear order in which arguments will be
found. The linear order of arguments is encoded by means of “slash” operators
\ and /, which mean “find an immediately preceding argument” and “find an
immediately following argument” respectively.

A simple example is the transitive verb category (s\np)/np for English verbs.
In words, this category indicates that it seeks a noun phrase to its right (with
rightward leaning slash “/” and category np), then another noun phrase to its
left (via the leftward leaning slash “\” and category np); upon consuming both
of these arguments, it yields a sentence (s). 1

1Note that the categories provided above use the “rightmost” notation for categories com-

2

English verbal categories, which will be used in later derivations, include:

(1) intransitive verbs: s\np
(2) transitive verbs: (s\np)/np
(3) ditransitive verbs: ((s\np)/np)/np
(4) sentential complement verbs: (s\np)/s

Categories are combined by means of two directionally sensitive rules of function
application, forward application and backward application:

(5) a. X/Y : f Y : x ⇒> X : f(x) (FA)

b. Y : x X\Y : f ⇒< X : f(x) (BA)

In words, forward application allows two word sequences, ωa with category of
type X/Y and interpretation f of type στ and ωb with category of type Y
and interpretation x of type σ, to form the word sequence ωa + ωb of type X
and interpretation f(x) of type τ . Backward application is just the directional
converse.

With the application rules, and a lexicon containing Ed and Ted with cate-
gory np and saw with transitive category (s\np)/np, the derivation for Ed saw
Ted is (6). Each step is annotated by underlining the combining categories
and labeling the underline with the symbol for the rule used: “>” for forward
application and “<” for backward application.

(6) Ed saw Ted

np (s\np)/np np
>

s\np
<s

The application rules can be viewed as general binary phrase structure rules
written in reverse (Steedman, 2000b). In this light, the above derivation can be
seen as a phrase structure tree turned upside-down, isomorphic to the standard
phrase structure analysis:

(7) a. S

NP

Ed

VP

V

saw

NP

Ted

b. s

np

Ed

s\np

(s\np)/np

saw

np

Ted

monly employed in work in Combinatory Categorial Grammar. In this notation, the leftmost
category in a function type is the result category: In (s\np)/np, s is the leftmost category in
the function and it indicates the result of applying the verb’s category to its two np arguments.
An alternative notation used in the Lambek calculus tradition places leftward arguments to
the left of the result category. As such, the transitive category is written (np\s)/np. There
are advantages and disadvantages to both conventions which we will not address here, but the
reader should expect to see both alternatives in the literature.

3

Despite this superficial similarity between derivations in the AB-calculus and
context-free phrase-structure trees, the categories labeling the nodes of (7b) are
more explicit than the atomic symbols of (7a). Subcategorization is directly
encoded in functor categories rather than through the use of new symbols such
as Vintrans , Vtrans and Vditrans (although expressions like this are frequently used in
the CCG literature as abbreviations for complex categories).

Furthermore, there is a systematic correspondence between notions such as
intransitive and transitive — after the transitive category (s\np)/np consumes
its object argument, the resulting category s\np is that of an intransitive verb
(see Oehrle (2011) for a deductive explanation of the relationship between cat-
egories and phrase structure labels).

Features: Atomic categories need not be treated as simple labels, but
can also be further elaborated with features, such as s[verb form=finite] and
np[num = plural] to distinguish different subtypes of those categories. This al-
lows agreement and other restrictions to be encoded in categories. For example,
the category of walks would be s[verb form=finite]\np[num=singular, person=3rd]
to ensure that it can only take a singular third-person subject noun phrase. In
this article, agreement concerns of this nature are mostly ignored. When used,
features are abbreviated as subscripts, e.g., sfin and npsing. It should be noted
that such features in CCG do not take on feature structures as values, as they
do in HPSG and other unification based formalisms.

Semantics: Categorial grammar frameworks assume a close connection be-
tween syntactic types and semantic types. In general, the syntactic type (cat-
egory) of a word is determined by the semantic type of the predicate which
the word realizes. For example, for a two-place predicate like see of type
e → (e → t) the corresponding transitive syntactic category is (s\np)/np. Given
that the types of the atomic categories s, np, and n are t, e, and e→t, respec-
tively, and that \ and / are directional variants of →, the type mapping can be
seen as:

(8) e → (e → t) ⇒ np → (np → s) ⇒ (np → s)/np ⇒ (s\np)/np

The categories and the lambda expressions are both curried (schönfinkelized)
functions which take their arguments one at a time (Schönfinkel, 1924). This
pairs the λx and λy in λxλy.see(y , x) with the outermost np and innermost np,
respectively, of the category (s\np)/np. The semantics given for these categories
are of course vastly simplified and are intended only to indicate basic predicate-
argument dependencies.

For verb-initial languages such as Modern Standard Arabic (9a) and verb-
final languages such as Japanese (9b) the transitive categories would be (s/np)/np
and (s\np)\np, respectively:

(9) a. ra’a “(he) saw” ` (s/np)/np : λx.λy.see′(x, y)

b. mimashita “saw” ` (s\np)\np : λy.λx.see′(x, y)

A common choice for representing semantic expressions with categorial gram-
mars is the lambda calculus (for alternatives, see Zeevat et al. (1987), Baldridge

4

and Kruijff (2002) and Copestake et al. (2001)). Some sample entries, in the
format [word := category : semantics], are given below:

(10) a. Ed := np : Ed

b. Ted := np : Ted

c. saw := (s\np)/np : λxλy .see(y , x)

The application rules allow a category like s\np to combine with an np argument
to its left, reducing to s. Similarly, a lambda expression such as λx .walk(x)
applies to an argument like Ed, reducing to walk(Ed). In both of these di-
mensions, a functor of type e→t (from entities to truth values) applies to an
argument of type e to produce a result of type t. This correspondence naturally
suggests that the application rules should simultaneously reduce both categories
and semantics in this manner.

With the entries in (10), a derivation with compositionally constructed log-
ical forms for Ed saw Ted follows:

(11) Ed saw Ted

np : Ed (s\np)/np : λxλy .see(y , x) np : Ted
>

s\np : λy .see(y ,Ted)
<

s : see(Ed,Ted)

Note that these lambda terms have been reduced implicitly in this derivation,
e.g. [λxλy .see(y , x)]Ted → λy .see(y ,Ted). Again, it should be stressed that
these particular logical forms are meant to serve illustrative purposes, and are
by no means a serious proposal for the meaning of such expressions.

Complex arguments: Categories may themselves have complex categories
as their arguments. This is typically the case for categories of control verbs,
relative pronouns and wh-items. Consider the following lexical entries (where
inf and base indicate infinitival and base forms, respectively):

(12) promised := ((s\np)/(sinf\np))/np : λxλPλy .promise(y , x ,Py)

(13) persuaded := ((s\np)/(sinf\np))/np : λxλPλy .persuade(y , x ,Px)

(14) to := (sinf\np)/(sbase\np) : λP .P

(15) go := sbase\np : λx .go(x)

Complex arguments such as sinf\np correspond to semantic predicates of type
e→t, indicated with uppercase variables (e.g. P above). The semantic expres-
sions for subject or object control verbs reflects the application of that function
to a variable representing either the subject or the object (above, y as subject
versus x as object). This establishes co-indexation of the controlled subject with
either the matrix subject or object.

For example, the derivations for Ed promised Ted to go and Ed persuaded Ted
to go are syntactically identical, but the correct dependencies are established
due to the co-indexation patterns given in the verb semantics.

5

(16) Ed promised Ted to go

np ((s\np)/(sinf\np))/np np (sinf\np)/(sbase\np) sbase\np
> >

(s\np)/(sinf\np) sinf\np
>

s\np
<s

Subject relative clauses in English follow a similar pattern. For example,
who has the category (n\n)/(s\np), which takes the complex argument s\np,
after which it has the category of a post-nominal modifier n\n. This can be
seen in the following abbreviated derivation:

(17) mann who(n\n)/(s\np) [saw Ted]s\np

Given the logical form λPλQλx .(Px ∧Qx) for who, the string man who saw Ted
has the intersective interpretation λx .see(x ,Ted) ∧man(x) (i.e., the entity x
such that x is the subject of seeing Ted and x is a man).

Coordination: The type-driven nature of categorial grammar provides
a natural explanation for basic coordination phenomena (see Hartmann, this
volume). The intuition common to most grammatical frameworks is that like
coordinates with like. This intuition can be represented as (X\X)/X, where the
variable X is used as a short-hand notation to schematize over the categories
(giving us specific categories such as (s\s)/s, ((n\n)\(n\n))/(n\n), and so on).
This captures a number of basic coordination data points:

(18) Ed [saw Ted]s\np and [walked]s\np.

(19) Ed [saw](s\np)/np and [heard](s\np)/np Ted.

(20) *Ed [saw Ted]s\np and [heard](s\np)/np.

(21) Ed [bought](s\np)/np and [gave Ted](s\np)/np books.

The fact that categories are typed, structured objects provides a direct account
of constituent similarity. In context-free grammar, coordination is limited to
constituents dominated by the atomic non-terminal labels defined in the gram-
mar. For example, if ditransitives are captured with the rule VP → V NP NP,
then there is no simple constituent label for a string like gave Ted . A binary
context-free grammar would remedy this particular example, but as is shown
in following sections, categorial grammars will often posit much more radical
alternative constituents.

Limitations of the AB calculus: The AB calculus has a number of
appealing properties, but it is a non-associative system that has a number of
limitations. For example, with the categories suggested so far, it cannot handle
constructions which suggest a constituent analysis of the combination of subjects
with verbs, such as:

(22) Right-node raising: (Ed saw) and (Ned heard), Ted.

(23) Object relative clauses: the man that (Ed saw).

6

(24) Intonation: Q: Who did Ed see? A: (Ed saw) Ted.

If a grammar is to provide an interpretation for such meaningful substrings,
then it would be natural to assume that a string such as Ed saw should have
a derivation that delivers a logical form such as λx .see(Ed, x). The category
then should be something seeking the object noun phrase to its right, but having
already consumed its subject noun phrase—in other words, s/np. This comes
down to a question of associativity: just as 3 + (4 + 1) = (3 + 4) + 1 = 8, can
our grammar show that Ed + (saw + Ted) = (Ed + saw) + Ted = s?

Another problematic set of constructions are those involving permutation,
which is of course quite common in languages with scrambling, such as Turkish.
In English, we see it with heavy-NP shift: Ed saw yesterday his tall old friend
Ted. This relates to commutativity (e.g., (3 + 4) = (4 + 3) = 7).

The problem is that the AB calculus is too inflexible because it is both
non-associative and non-commutative. While it is possible to deal with some of
its limitations by increasing categorial ambiguity (e.g., using a further transi-
tive category (s/np)\np to handle (22)-(24)), it is worthwhile considering more
powerful systems of categorial inference that can incorporate associativity and
commutativity in a principled, rather than ad hoc, manner. In the next two
sections, we consider two independently motivated ways to do so—rule-based
and logical extensions—and also highlight their similarities.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) developed from work by Lyons, Geach,
Bach, Dowty and others in the 1960’s and 1970’s that extended the AB calcu-
lus with further rules (Steedman, 1996a, 2000b; Steedman and Baldridge, 2011;
Steedman, 2012). There are at least two versions of CCG found in the literature.
One is the formalism developed by Mark Steedman and his collaborators which
incorporates type-raising, function composition and substitution rules (corre-
sponding to Curry and Feys’ T, B and S combinators). The other prominent
approach to CCG has largely been developed in a series of papers by Pauline
Jacobson (Jacobson, 1990, 1992a, 1993, 1999, 2000, 2003, a.o.) which makes
extensive use of unary type-changing rules (such as the so-called Geach rule) in
place of function composition. We begin by considering in turn the combinators
incorporated into CCG by Steedman and his collaborators.

2.1 Combinatory rules

The rules that Steedman proposed for CCG are based on a small set of com-
binators from combinatory logic (Curry and Feys, 1958). Combinatory logic
(Schönfinkel, 1924; Curry and Feys, 1958) is a formalism which allows functions
defined in the lambda calculus to be manipulated without requiring the use of
lambda-abstraction and hence of computation-intensive mechanisms for keeping
track of variable assignments. Combinators are therefore functions defined over
terms of the lambda-calculus.

7

The combinators used in CCG include: (function) composition (B), type-
raising (T), and substitution (S). The relationships of these combinators to
terms of the lambda calculus are defined by the following equivalences (Steed-
man, 2000b):

(25) a. Tx ≡ λf.f x

b. Bfg ≡ λx.f(g x)

c. Sfg ≡ λx.fx(g x)

The type-raising combinator T turns a term x or type σ into a function taking
as its argument a function f of type στ (a function that takes a term of type
σ is its argument, an abbreviated form of σ→τ) and returns a term of type τ .
The result of type-raising x is therefore a function of type (στ)τ . For example,
take a constant Max of type e. Applying T to this produces (among various
results) functions of type (et)t:

(26) T(Max) ≡ λPet.P (Max)

The composition combinator B composes a function f of type στ with a
function g of type δσ before g has applied to its own argument of type δ. The
result is a new function h of type δτ that applies the embedded function g to its
argument. For example, to obtain a logical form for Max eats, the combinator
B is applied to the result of (26) and to the LF for eats, λyλz.[eat(z, y)] (of type
e(et)); this returns the function λx.[eat(Max, x)] (of type et) as follows:

(27) B(λPet.[P (Max)])(λyλz.[eat(z, y)]) ≡
λxλPet.[P (Max)](λyλz.[eat(z, y)](x)) ≡
λxλPet.[P (Max)](λz.[eat(z, x)]) ≡
λx.[eat(Max, x)]

Finally, the substitution combinator S is quite similar to B, except that
the function it creates applies both f and g to its argument x. This accounts
for parasitic gap constructions such as These are the articles which Ed filed
without reading (Steedman, 1996b). To obtain the logical form for file without
reading, S is applied to the function λyλz.file(z, y) of type e(et) and to another
function λyλQetλz.[Qy ∧ without(read(z, y))] of type e((et)(et)). This results
in a function of type eet:

(28) S(λzλQetλy.[Qy ∧ (without(read(y, z)))])(λzλy.[file(y, z)]) ≡
λzλy.[file(y, z) ∧ (without(read(y, z)))]

The CCG rules corresponding to the T, B and S combinators are linearized
versions of combinators defined over syntactic functions of the type familiar
from the AB calculus, such as np, s\np or s/(s\np) according to the following
principle (Steedman, 2000b):

(29) The Principle of Combinatory Type Transparency
All syntactic combinatory rules are type-transparent versions of one of
a small number of simple semantic operations over functions.

8

In plainer language, syntactic rules are order-sensitive versions of the combina-
tors defined over syntactic categories that correspond to the types over which
the lambda calculus is defined. For example, if the semantic type e corresponds
to the syntactic type np while the semantic type t corresponds to the syntactic
type s, then the semantic type et will correspond to the two syntactic types s\np
and s/np.

Because syntactic functions vary in terms of the linear order in which they
have to combine with their arguments, each combinator corresponds to two
or more syntactic rules. Just as the rule of β-reduction in the lambda calculus
corresponds to both forward and backward application in the AB-calculus, there
are both forward and backward versions of the type-raising, composition and
substitution rules.

Type-raising: CCG employs a class of type-raising rules that mirror the
effect of the combinator T. For example, forward type-raising permits a subject
noun phrase in English to become a function seeking an intransitive verb phrase:

(30) Forward type-raising
X : a ⇒T Y/i(Y\iX) : λf .fa (>T)

(31) Backward type-raising
X : a ⇒T Y\i(Y/iX) : λf .fa (<T)

Note that the Y in these rule definitions is a schema over types in the range
of functions taking X as their domain. In other words, in the case of forward
type-raising, Y can be of type s, s\np, (s\np)/np, and so on.

In the CCG literature an assumption is frequently made that the type-raising
rules are not actually syntactic rules per se, meaning that they are not available
for use in derivations. Instead, they are treated as operating within the lexicon
and generating a family of types for each member of an atomic category.

Another assumption is that type-raised categories are used to represent the
assignment of morphosyntactic information such as nominative case, agreement
marking, etc. Using Modern Standard Arabic to illustrate, the NP al-walad-u
“the boy” is marked in the nominative case and controls 3rd-person-singular
agreement and might hence have the category in (32a) while al-walad-a, the
same NP marked in the accusative case, might have the category in (32b):

(32) a. al-walad-u ` (s/npacc)\((s/npacc)/npnom,3ms)

b. al-walad-a ` s\(s/npacc,3ms)

This analysis implies a theoretical claim that noun phrases, at least those that
are marked with case or which control agreement morphology, will necessarily be
represented as raised categories in a syntactic derivation. This is perhaps most
interesting in a language like English, where there is a directional difference in
the categories (as opposed to just a featural difference) between nominative case
(subject noun phrases, with category s/(s\np)) and non-nominitave case (e.g.
object noun phrases, with category s\(s/np)).

Composition: The function composition rules add associativity to the AB
calculus. This means that a sequence of three expressions ABC that would have

9

to be combined in the order A(BC) in the AB calculus can also be combined
in the order (AB)C by using composition. To illustrate, consider example (6),
repeated here, as it is derived in the AB calculus:

(33) Ed saw Ted

np (s\np)/np np
>

s\np
<s

The AB-calculus provides only function application as a combinatory rule.
Given the categories assigned to Ed, saw and Ted and the definition of func-
tion application, this means that the words have to be combined in the order
Ed(saw Ted).

However, CCG provides two rules (or rather families of rules) based on the B
combinator, forward and backward (harmonic) composition, called “harmonic”
because they require that the directions of the slashes in the categories being
composed are the same (and hence “harmonic”):

(34) a. Forward harmonic composition
X/Y Y/Z ⇒B X/Z (>B)

b. Backward harmonic composition
Y\Z : g X\Y : f ⇒B X\Z : λx .f (gx) (<B)

Returning to the example, if Ed is type-raised and composed with saw
via forward composition, the order can be reversed, allowing the words to be
combined in the order (Ed saw)Ted:

(35) Ed saw Ted

np : Ed (s\�np)/·np : λxλy .see(y , x) np : Ted
>T

s/�(s\�np) : λP .PEd
>B

s/·np : λx .see(Ed, x)
>

s : see(Ed,Ted)

Allowing associativity in the grammar allows elegant analyses of extraction
and coordination by allowing constituents to be derived that cannot be created
in the AB calculus. For example, a typical kind of extraction is relative clause
formation, illustrated in the following derivation for the relative clause that Sam
wants to eat, in which two successive applications of forward composition allow
for Sam wants to eat to be derived as a constituent which is then taken as the
argument to the relative pronoun:

10

(36) that Sam wants to eat

(np\np)/(s/np) s/(s\np) (s\np)/(s\np) (s\np)/np
: : : :

λQλPλx.Px ∧Qx λR.R(Sam) λPλy.wanty(Py) λzλx.eat(x, z)
>B

(s\np)/np
:

λzλy.wanty(eat(y, z))
>B

s/np
:

λz.want(Sam)(eat(Sam, z))
>

np\np
:

λPλx.Px ∧want(Sam)(eat(Sam, x))

A further example that cannot be handled elegantly with the limited ap-
paratus of AB (and context-free grammar) involves the coordination of verbal
complexes such as that in (37).

(37) Ed will see and should hear Ted.

A standard analysis of modal verbs is that they are functions from intransitive
verb phrases into intransitive verb phrase (see Hoyt and Baldridge 2008 for a
different analysis). However, for this coordination to proceed, the modal verbs
will and should must combine with see and hear respectively and coordinate
before their shared object argument is consumed. Because the only rule available
in the AB-calculus is functional application, there is no way to do this:

(38) will(s\np)/(sbase\np) meet(sbase\np)/np

The rule >B, however, does allow this: for the combination in (38), X is s\np,
Y is sbase\np, and Z is np. The result, X/Z, is thus (s\np)/np.

Crossed Composition: The function application and composition rules
discussed so far are all order-preserving, meaning that they require that syntactic
functions (such as verbs) be directly adjacent to their arguments in order to
be able to combine with them. Thus, they are unable to derive sequences of
expressions in which function categories are not immediately adjacent to their
arguments. In the CCG literature, non-adjacent arguments are said to have
been permuted.

An example of argument permutation in English is heavy-NP shift, in which
an adverb comes between a verb and its direct object, such as Ed saw today
his tall friend Ted. Assuming that today is of type (s\np)\(s\np) and that Ted
and Ed have raised categories, then the rules given so far provide no way of
combining the categories in the sentence because the directions of the slashes
do not match those specified in the rules:

(39) Ed saw today his tall friend Ted

s/(s\np) (s\np)/np (s/np)\(s\np) s\(s/np)
∗ ∗ ∗ <B ∗ ∗∗

For this reason, “non-harmonic” or “crossed” composition rules are provided:

11

(40) Forward crossed composition
X/Y Y\Z ⇒B X\Z (>B×)

(41) Backward crossed composition
Y\Z X/Y ⇒B X/Z (<B×)

The crossed composition rules allow function categories to compose when the
directions of their slashes do not match. This in turns allow argument permu-
tation to be derived. In the example above, the backward crossed composition
rule allows the adverb today to combine with saw before the verb has consumed
its direct object:

(42) Ed saw today his tall friend Ted

np (s\np)/np (s/np)\(s\np) np
<B×

(s\np)/np
>

s\np
<s

The crossed composition rules also allow non-peripheral extraction to be
derived:

(43) man whom Ed saw today

(n\�n)/�(s/·np) np (s\�np)/·np (s\�np)\·(s\�np)
>T <B×

s/�(s\�np) (s\�np)/·np
>B

s/·np
>

n\�n

This example succinctly shows type-raising, harmonic composition, and crossed
composition rules all working in concert to induce the associativity and permu-
tativity required of the grammar.

2.2 Modalized CCG

Of course, adding the crossed composition rule is dangerous in the sense that it
wildly overpredicts the acceptability of argument permutation in a language like
English. For example, the forward crossed-composition rule allows the following
unacceptable phrase a powerful by Ronaldo shot to be derived (example from
Baldridge 2002):

(44) a powerful by Ronaldo shot

n/n n\n n
<B×

n/n
>n

12

Modalized slashes: One way of blocking derivation like this is to define
language-specific rule restrictions (or outright bans) in order to limit the appli-
cability of rules (Steedman, 2000b). This is unattractive because it means that
the grammars for languages can vary both in their lexicon and their rule set.
An alternative that has become standard practice in CCG is to define a set of
modes of combination that can be used to create slash types which selectively
license some, but not all, of a set of truly universal combinatory rules. Jacob-
son (1992b) was perhaps the first to use this strategy in a CCG-like system;
there, she uses slash-types to force composition (e.g., for raising verbs) and dis-
allow application. Baldridge (2002) provides a general framework for creating
modalized CCG rules using underlying logics that generate the rules as proofs.
Most work in CCG now uses the set of modalities M = {?, �,×, ·} defined by
Baldridge and Kruijff (2003). They have the following behaviors:

• ?: non-associative and non-commutative

• �: associative and non-commutative

• ×: non-associative and commutative

• ·: associative and commutative

These modalities allow typed slashes such as /? and /� to be defined. How their
behaviors are projected is explained in the remainder of this section. Their basis
in Categorial Type Logics is discussed in section 3.

With slashes typed according to different modes, the rules must be defined
with respect to those types. The application rules are the same as with AB,
but may be used with any of the slash types, as indicated with the i subscript,
where i can be any of the modalities given in M:

(45) Forward application
X/iY Y ⇒ X (for i ∈ M) (>)

(46) Backward application
Y X\iY ⇒ X (for i ∈ M) (<)

The crossed-composition rules are restricted to function categories marked with
the modalities · and ×:

(47) Forward crossed composition
X/iY Y\jZ ⇒B X\jZ (for i, j ∈ {×, ·}) (>B×)

(48) Backward crossed composition
Y/jZ X\iY ⇒B X/jZ (for i, j ∈ {×, ·}) (<B×)

Likewise, the harmonic composition rules are restricted to categories marked
with the modalities · and �:

(49) Forward harmonic composition
X/iY Y/jZ ⇒B X/jZ (for i, j ∈ {�, ·}) (>B)

13

(50) Backward harmonic composition
Y\jZ : g X\iY : f ⇒B X\jZ : λx .f (gx) (for i, j ∈ {�, ·}) (<B)

With these modes, we can have lexical entries such as the following which
allow the example of heavy-NP-shift in (42) above, but which disallow the un-
acceptable example in (44):

(51) a. saw := (s\�np)/·np
b. today := (s\�np)\·(s\�np)
c. powerful := n/?n

d. by Ronaldo := n\×n
(52) a. a powerful by Ronaldo shot

np/?s n/�n n\×n n
∗ ∗ ∗ >B ∗ ∗∗

b. Ed saw today his tall friend Ted

np (s\np)/·np (s/np)\×(s\np) np
<B×

(s\np)/×np
>

s\np
<s

The advantage of using modalization of argument slashes is that it allows
the rules to be universal: all the rules of modalized CCG are available to every
grammar; their applicability is controlled by which modalities syntactic func-
tions are specified with. Hence, variability in word order (or lack thereof) is a
lexical property of words in a given language, rather than something that has
to be stipulated in a language-specific rule set.

Extraction and coordination: The ability for subject noun phrases to
combine with the verb before the verb has consumed its object noun phrases
provides precisely the constituents needed for phenomena such as right-node
raising, object extraction, and topicalization in English. For example, the ob-
ject extraction man whom Ed saw is now derivable, as is unbounded object
extraction. Forward composition allows the extracted argument to be succes-
sively passed up until it is revealed to the relative pronoun:

(53) man whom I thought that Ed saw

n (n\�n)/�(s/·np) np (s\�np)/�s s/�s np (s\�np)/·np
>T >T

s/�(s\�np) s/�(s\�np)
>B >B

s/�s s/·np
>B

s/·np
>B

s/·np
>

n\n
<n

14

The subject-verb constituent s/·np is also implicated in right node raising:

(54) Ed saw and Ned heard Ted

s/·np ((s/·np)\?(s/·np))/?(s/·np) s/·np np
>

(s/·np)\?(s/·np)
<

s/np
>s

This analysis is also consistent with intonational constituency and incremen-
tal parsing with the competence grammar (Steedman, 2000b). Importantly, in
addition to deriving these constituents, CCG provides compositional interpre-
tations for them.

Other types of “odd” constituent coordinations appear cross-linguistically,
such as argument cluster coordination in English: Ed gave Ted tea and Ned bread .
This phenomenon has also been called non-constituent coordination, reflecting
the difficulty in assigning a sensible phrase structure constituency that groups
indirect objects with direct objects. Again, CCG’s increased associativity allows
a constituent to be formed in non-standard ways. To deal with such an example,
we need the backward versions of the composition and type-raising rules.

These rules conspire in the analyses of Steedman (1985) and Dowty (1988)
(presented in 1985) to create the necessary constituents for argument cluster
coordination. After type-raising each of the two objects, they are composed,
resulting in a function which is looking for a function that is missing its indirect
object and direct object arguments. This function can then be coordinated
with other functions of the same type. The derivations in (55-56), in which the
subject has already composed with the verb, show this.

(55) Ted tea and Ned bread

np np (X\?X)/?X np np
<T <T <T <T

(s/·np)\�((s/·np)/�np) s\·(s/·np) (s/·np)\�((s/·np)/�np) s\·(s/·np)
<B <B

s\�((s/·np)/�np) s\�((s/·np)/�np)
>

(s\�((s/·np)/�np))\?(s\�((s/·np)/�np))
<

s\�((s/·np)/�np)

(56) Ed gave Ted tea and Ned bread

(s/·np)/�np s\�((s/·np)/�np)
<s

Because the combinatory rules are semantically consistent, this derivation pro-
duces a meaning representation of the following form:

(57) give(Ed,Ted, tea) ∧ give(Ed,Ned,bread),

This captures the correct dependencies between the verbal predicate and its
arguments.

15

With the availability of the composition rules in the universal grammar, it
is important that the coordinating categories have the most restrictive ? slashes
used thus far. If they were given instead categories of the form (X\�X)/�X, it
would be possible to produce the following undesirable derivation:

(58) *man who walks and he talks

(n\�n)/�(s\�np) s\�np (s\�s)/�s np s\�np
<s
>

s\�s
<B

s\�np
>

n\�n

With the restrictive category (s\?s)/?s, the composition of walks with and he
talks is blocked because <B is only defined for the modalities � and ·, so and he
talks with category s\?s cannot compose with s\�np of walks.

Substitution: CCG makes available only one further rule class, based on
the substitution combinator S (Szabolcsi, 1987). The combinator S is different
from B and T in that it allows a single resource to be utilized by two different
functors. We find the need for such a combinator in parasitic gap constructions
(Ross, 1967) such as the following:

(59) Ed copied and filed without reading, your handbook article.

(60) articles which Ed filed without reading

In both examples, a single dependent acts as the argument of both filed and
without reading. If we consider the categories of the constituents, it is clear that
the rules defined thus far will not allow the derivation to proceed.

(61) filed(s\�np)/·np [without reading]((s\�np)\·(s\�np))/·np

The fact that sequences like filed without reading can coordinate with transitive
verbs as in the example indicates that it must be possible to combine their
categories to form a transitive category. The following rule provides exactly
this functionality:

(62) Backward crossed substitution
Y/jZ (X\iY)/jZ ⇒S X/jZ (for i, j ∈ {×, ·}) (<S×)

With this rule available in the system, the derivation of (60) is:

(63) articles which Ed filed without reading

(n\�n)/�(s/·np) np (s\�np)/·np ((s\�np)\·(s\�np))/·np
>T <S×

s/�(s\�np) (s\�np)/·np
>B

s/·np
>

n\�n

16

Naturally, there are two other harmonic rules and a forward crossed rule based
on the substitution combinator. For further discussion on the substitution rules
and a more detailed account of parasitic gaps in English, see Steedman (1996a).

Other combinators: As CCG analyses are performed for a wider range
of linguistic data, certain data types come up which the rules discussed above
are not able to derive. Several kinds of such data involve pronominal binding
and are discussed in the following subsection. Another kind involves sentences
like the following, discussed by Hoyt and Baldridge (2008).

(64) Make sure you also read the instructions about what you can and
what you should NOT upload to this website.

The problem that this example presents (see Hoyt and Baldridge for further
examples from several languages) is that the sequences what you can and what
you should not have to be put together as constituents before they can be
combined with and :

(65) what you can and what you should not

s/(s/np) s/(s\np) (X\X)/X s/(s/np) s/(s\np)
∗ ∗ ∗ >B ∗ ∗∗ ∗ ∗ ∗ >B ∗ ∗∗

Hoyt and Baldridge propose the following rules for deriving examples like this,
based on proofs in an underlying categorial type logic:

(66) X/�(Y/�Z) : f Y/�W : g ⇒S X/�(W/�Z) : λh.f (λx .ghx) (>D)

(67) Y\�W : f X\�(Y\�Z) : g ⇒S X\�(W\�Z) : λh.f (λx .ghx) (<D)

(68) what you can and what you should not

s/(s/np) s/(s\np) (X\X)/X s/(s/np) s/(s\np)
>D >D

s/((s\np)/np) s/((s\np)/np)
>

((s\np)/np)\((s\np)/np)
<

(s\np)/np

Future research will perhaps reveal additional kinds of examples that the current
CCG rule set will not account for.

2.3 Further combinators

The Division Combinator: Another variation on CCG is developed by Pauline
Jacobson in a sequence of carefully argued papers (Jacobson, 1990, 1992a, 1993,
1999, 2000, 2003, a.o.) in which she analyzes data involving intricate binding
interpretations. The version of categorial grammar that she develops differs
from the version of CCG discussed above (referred to here for convenience as
“BTS-CCG”) in making central use of what she (and others) refer to as the
“Geach Rule.” It is otherwise known as the Division combinator (referred to

17

here as the G-rule), which is equivalent to a unary version of the B-combinator
discussed above.2

(69) Forward Division
X/Y : fστ ⇒>G (X0Z)/(Y0Z) : λPδσλxδ.f(P (x)) (> G)

(70) Backward Division
X\Y : fστ ⇒<G (X0Z)\(Y0Z) : λPδσλxδ.f(P (x)) (< G)

In addition to the G-rules, Jacobson also assumes the familiar type-raising (T)
rules as well as two further rules to provide analyses for a variety of subtle
binding data. Rule (71a) is a unary version of the substition rules and is used
to model pronominal binding. Rule (71b) is a “de-Curry-ing” rule which changes
a function of type σ(δτ) to a function of type (σδ)τ . Jacobson uses the M -rule
to model functional interpretations of relative clauses (Jacobson, 2000, 2002).

(71) a. Rule Z
(X\Y)/Z : λyλx.fxy ⇒Z (X\Y)/(Z0Z) : λgλx.f(gx)x) (Z)

b. Rule M
(X|Y)|Z : λyλx.fxy ⇒M X|(Y|Z) : λg.∀x[x∈dom(g) → fxgx] (M)

Jacobson treats pronouns as semantic identity functions λx.x (of type ee) and
syntactically as functions of category np0np. Binding is realized by means of
the Z-rule, which turns predicate categories into categories taking as arguments
functions what we will call “pronominal functions,” namely functions with the0-operator looking for an np argument.

To illustrate with a simple example, consider the sentence Every mani thinks
Mary loves himi, interpreted with the quantifier every man binding the pronoun
him. This is derived in (72), with successive application of the G-rule to the
categories above the pronoun in the binding dependency. The type-changing
rule Z changes the type for think into one taking a pronominal function as its
argument.

(72) thinks Mary loves him

(s\np)/s s/(s\np) (s\np)/np np0np
: : : :

λp.λy.think′yp λQet.Q(Mary′) λz.λx.love′xz λz.z
Z G G

(s\np)/(s0np) (s0np)/((s\np)0np) ((s\np)0np)/(np0np)
: : :

λRet.λx.think
′x(Rx) λReet.λz.R(Mary′)z λPee.λz.λx.love

′x(Pz)
>

(s\np)0np : λz.λx.love′xz
>

s0np : λz.love′(Mary′)z
>

s\np : λx.think′x(love′(Mary′)x)

2Note that in Jacobson’s notation, the category XY is a function type, while here we
represent this type using an 0-operator, as in X0Y.

18

The quantifier every man then takes this expression as its argument, binding
the pronoun indirectly.3

(73) every man thinks Mary loves him

s/(s\np) : λPet.∀x[man′x → Px] s\np : λx.think′x(love′(Mary′)x)
>

s : ∀x[man′x → think′x(love′(Mary′)x)]

Note that Jacobson’s analysis of pronominal binding can be recreated within
BTS-CCG, given that the combination of the G-rule and function application
corresponds directly to function composition (B) in BTS-CCG. Likewise, the
Z-rule can be assumed to be a lexical rule, in line with the standard treatment
of unary type-changing rules in the BTS-CCG literature. The binding effect in
(72) can then be captured in BTS-CCG as follows (we subscript slash-operators
corresponding to the0-operator above with a “g”):

(74) thinks Mary loves him

(s\np)/(s/gnp) s/(s\np) (s\np)/np np/gnp
: : : :

λPet.λy.think
′y(Py) λQet.Q(Mary′) λy.λx.love′xy λz.z

>B
(s\np)/gnp : λz.λx.love′xz

>B
s/gnp : λz.love′(Mary′)z

>
s\np : λy.think′y(love′(Mary′)y)

From this perspective, analyses in G-CCG can be straightforwardly captured in
BTS-CCG, and vice versa.

However, one potential point of difference between the two formulations of
CCG involves locality restrictions on application of the rules. As was discussed
above, BTS-CCG assumes that application of the harmonic and composition
rules are restrained by the modalities. Baldridge (2002) argues that restrictions
on extraction out of adjuncts and coordinate structures be modeled in terms
of modal restrictions. In particular, he argues that adjuncts such as relative
clauses as well as and have types specified with the ?-modality:

(75) that, which ` (np\np)/?(s/np) : λQet.λPet.λx.[Px ∧Qx]

(76) and ` (X\?X)/?X : λqστ .λpστ .λxσ.[p(x) ∧ q(x)]

The presence of the ?-modality on these categories prevents the composition
rules from applying to them and so prevents extraction dependencies from being
established from within their arguments.

Jacobson, however, used her framework to analyze data showing binding
from within conjunct (77) and adjunct islands (78):

(77) Every mani thinks that [hei lost and Mary won].

(78) Every mani hopes that the woman [that hei wants to marry] loves him.

3See Szabolcsi (2003) for an extension of Jacobson’s framework to cross-sentential
anaphora.

19

For example, in Jacobson’s framework the coordinate structure in (77) would
be analyzed as follows.

(79) he lost and Mary won

np0np s\np (s\s)/s np s\np
: : : : :

λx.x λy.lose′y λq.λp.p ∧ q Mary′ λz.win′z
G <

(s0np)\(np0np) s
: :

λPee.λy.lose
′(Py) win′(Mary′)

< >
s0np : λy.lose′y s\s : λp.p ∧ win′(Mary′)

G
(s0np)\(s0np) : λQet.λx.Qx ∧ win′(Mary′)

<
s0np : λx.lose′x ∧ win′(Mary′)

Reproducing this analysis in BTS-CCG requires function composition into
the right conjunct of the coordinate structure. Assuming that and has the type
(s\?s)/?s, this is impossible.

(80) he lost and Mary won

np0np s\np (s\?s)/?s np s\np
: : : : :

λx.x λy.lose′y λq.λp.p ∧ q Mary′ λz.win′z
<B <

s0np : λy.lose′ s : win′(Mary′)
>

s\?s : λp.p ∧ win′(Mary′)
∗ ∗ ∗ <B×

∗ ∗∗

Therefore, interpreting Jacobson’s analysis in BTS-CCG by reducing the G-rule
+ FA to function composition loses coverage for examples like this. By the same
token, the Geach framework that Jacobson developes in her papers provides no
means for imposing restrictions on the application of the G-rule. If it were to
be used to model extraction as well as pronominal binding, it would therefore
fail to account for adjunct- and coordinate structure constraints that BTS-CCG
captures.

Note, however, that this difference in coverage is a technical matter and
reflects the different research interests in the two communities. Much of the
work in BTS-CCG focuses on modeling extraction dependencies and other kinds
of word order permutatation. As a consequence, the modeling of extraction
restrictions has been a more important concern in the BTS-CCG literature.
Jacobson, on the other hand, has focused almost entirely on pronominal binding
phenomena and has had little to say about modeling extraction dependencies
(Jacobson, 1990). Reconciling the two approaches therefore is simply a matter
of technical innovation. As discussed in the next section, the modalized form of
CCG is actually based on a particular set of structural rule postulates in CTL.
This core logic can be seen as a generator of rules for CCG, and indeed, the
Geach rule, among others, are theorems of that logic (Baldridge, 2002). The
modalities for these rules are ensured to be consistent, so they would enforce
the same constraints for a Geach-based derivation like (79) as they would for

20

one based on the standard CCG combinators like (80). This points to a way to
reconcile the empirical coverage of the two approaches: augment the underlying
logic so that the {×, �, ?, ·} modality set used in BTS-CCG has an additional
modality (say, +) that allows composition with any of the other modalities. This
would be done via structure rule postulates (see next section) that generate rules
such as the following.

(81) Anaphoric Composition
X/iY Y\+Z+pro ⇒>B+ X\+Z+pro (for i ∈ {?,×, �, ·}) (> B+)

For the sake of notational felicity, we abbreviate \+ with the 0-symbol used
above: \+= 0.

With this additional rule, Jacobson’s examples can be derived while still
retaining the precise modal control over long-distance dependencies that BTS-
CCG offers.

(82) thinks he lost and Mary won

(s\np)/(s0np) np0np s\np (s\?s)/?s np s\np
: : : : : :

λPet.λx.think
′x(Px) λx.x λy.lose′y λq.λp.p ∧ q Mary′ λz.win′z

<B+ <

s0np : λy.lose′y s : win′(Mary′)
>

s\?s : λp.p ∧ win′(Mary′)
<B+

s0np : λy.lose′y ∧ win′(Mary′)
>

s\np : λx.think′x(lose′x ∧ win′(Mary′))

Augmenting BTS-CCG with this rule would make it possible to capture
other kinds of binding relationships that have not received much attention in the
framework, such as the extensive use of resumptive pronouns in languages like
Arabic, Hebrew, and others (Demirdache, 1991, 1997; Aoun and Benmamoun,
1998; Aoun and Choueiri, 2000; Aoun et al., 2001; Ouhalla, 2001; Choueiri,
2002; Aoun and Li, 2003; Asudeh, 2005, 2012; Hoyt, 2010, a.o.).4

Other technical innovations could be relevant for such problems, especially
“hat categories” that allow a form of lexically encoded type-changing (Honnibal,
2009; Honnibal and Curran, 2009).

The Wrap Rule: Other combinators have been considered in other con-
texts, most notably the commuting combinator (Cfxy ≡ fyx) in the guise of
the wrap rule (Bach, 1979). Most notably, wrap rules have been employed by
much work by Dowty (e.g., 1982; 1997). One of the uses of wrap rules is that
they allow verbal categories to be defined according to a hierarchy of grammat-
ical functions, where each of the arguments corresponding to those functions is
represented by adding it to the subcategorization based on the previous function
(Dowty, 1997). For example, a subject is a noun phrase that combines with s/np
(or s\np) to form an s, an object is a noun phrase that combines with (s/np)/np

4For an analysis of anaphora in a CTL-framework, see Hepple (1990); Jäger (1996, 1997,
2001, 2005).

21

(or (s\np)/np) to form s/np (or s\np), and so on. Wrap-enabling slashes then
take care of mismatches in word order.

Concretely, consider a verb-initial language, where the intransitive would
be s/nps. According to Dowty’s recipe for constructing verbal categories, this
would lead to the transitive category (s/nps)/npo, which produces VOS word
order. For VSO languages, Dowty takes the category to be (s/nps)/wnpo, where
the /w slash does not produce adjacent concatenation of the verb and the object,
but instead “wraps” them around the as-yet-unconsumed subject. In CCG, this
effect could be achieved with a unary rule that reorders such categories:

(83) Forward Wrap
(X/Y)/wZ ⇒Wrap (X/Z)/Y (> W)

However, in CCG, the effect of such a rule is assumed to be a process that could
be carried out in the lexicon (Steedman and Baldridge, 2011), meaning that
one could define category hierachies in the lexicon in the manner suggested by
Dowty, but still use the linearized category (s/npo)/nps for VSO verbs in syntax.
Dowty provides a different characterization of wrap in terms of commutative
rules in multi-modal type-logical grammar (see the next section).

One of the punchlines of the wrap story is that the binding theory can
be defined in terms of the structures defined by categories themselves and the
derivations they license. This contrasts with Steedman’s account of binding
in CCG, which is based on c-command defined over logical forms (Steedman,
2000a). Dowty suggests that this use of logical form is at odds with Montogovian
assumptions and should thus be dispreferred to the wrap analysis. Steedman
argues that binding of true reflexives and bound anaphors is a strictly clause
bounded phenomena, and thus constraints on binding may be specified in the
lexicon. Furthermore, he suggests that whether this is done in terms of con-
straints over derivation structures (categories) or a logical form corresponding
to them is immaterial: whereas Dowty makes no intrinsic use of logical form,
Steedman makes no intrinsic use of derivation structure.

3 Categorial Type Logic

CCG adds to the AB calculus a finite set of rules of category combination.
These rules selectively introduce more inference patterns that support greater
associativity and/or commutativity. An alternative is to define a fully logical
characterization of categorial grammar. To begin on this path, note first the
similarity of the rules of the AB calculus with Modus Ponens: both types of
rules involve the use of inference. However, in the forward application rule
(X/Y Y ⇒ X), the resource Y is eliminated. This suggests that the AB calculus
is related to resource-sensitive linear logic (Girard, 1987). Viewed this way,
the AB calculus is a system of inference; however, unlike linear logic, the AB
calculus is a partial system of inference because it has no corresponding ability to
introduce resources: in other words, it does not support hypothetical reasoning.
Furthermore, linear logic also allows different types of logical connectives to

22

be defined; each connective may exhibit different behaviors with respect to
associativity and commutativity (and other dimensions).

The characterization of categorial grammar as a logic was first proposed
by Lambek (1958) and has been since developed into the framework known as
Categorial Type Logics (CTL, a.k.a. Type-Logical Grammar and subsuming
various forms of the Lambek calculus) (Morrill, 1994; Hepple, 1995; Carpenter,
1998; Moortgat, 1999; Oehrle, 2011). CTL supports multiple unary and bi-
nary modes of grammatical combination that can exhibit quite different logical
properties, which in turn lead to different syntactic possibilities (Moortgat and
Oehrle, 1994).

Residuation: From the perspective of CTL, slashes are directionally sen-
sitive implications, in the full logical sense of the term. As with CCG, slashes
may be typed, where each type corresponds to a particular mode of combination
with different logical properties (e.g., associativity, commutativity). Each slash
pair \i, /i is related to a product operator •i; the three operators are related by
the residuation laws:

(84) A ` C/iB iff A•iB ` C iff B ` C\iA

These laws say that if one can conclude the formula C when the formula A is
next to the formula B (i.e., A•iB), then one also knows that from A it is possible
to conclude C/iB and that likewise from B to conclude C\iA. The slash \i is the
right residual of •i, and /i is the left residual. This may not seem particularly
intuitive, but as an analogy, think of multiplication: from A×B = C one knows
that A = C

B and B = C
A . Because multiplication is commutative, the operator

÷ is both the left and right residual of ×.
In linguistic terms, a category formed with the product like np•?np represents

the juxtaposition of two noun phrases under the modality ?. Slash categories
are the same as with CCG: incomplete expressions seeking other expressions.
A category that uses all of the operators is (s\�np)/�(np•?np), which would be a
candidate category for ditransitive verbs in English. Nonetheless, because the
actual linguistic use of product is fairly rare in the CTL literature, the rules for
using it are omitted in this discussion. See Moortgat (1997) or Vermaat (2005)
for further details on the use of product.

Base Logic: The core of a CTL system is a universal component, referred
to as the base logic, which defines the basic behavior common to all of the con-
nectives. From the perspective of the AB calculus, the most familiar parts of the
base logic are the slash elimination rules. These correspond to AB’s application
rules, but there are important differences. Most importantly, slash elimination
is not necessarily tied to string adjacency as it is in functional application. In-
stead, these rules include a structure building component that organizes the
antecedents of the premises into a new structured antecedent (which may be
subsequently restructured and reordered).5

5The reader should note that in the CTL literature two notational conventions are used for
representing categories and proofs. One is referred to as the natural deduction presentation
and more closely resembles the notation used for CCG categories and derivations and for which

23

(85) Slash elimination schemas (with i ∈ M):

a.
Γ ` X/iY ∆ ` Y

[/iE]
(Γ ◦i ∆) ` X

b.
∆ ` Y Γ ` X\iY

[\iE]
(∆ ◦i Γ) ` X

Note how the direction of the slash is reflected in the order of the components
of the structured antecedent.

With these rules, we can provide the following proof that the sentence Ed
saw Ted today is of type s:

(86)
Ed ` np

saw ` (s\�np)/·np Ted ` np
[/·E]

(saw ◦· Ted) ` s\�np today ` (s\�np)\·(s\�np)
[\·E]

((saw ◦· Ted) ◦· today) ` s\�np
[\�E]

(Ed ◦� ((saw ◦· Ted) ◦· today)) ` s

This is the standard presentation format for CTL analyses. Note that the struc-
tured antecedents contain lexical items, but these are actually standing in for the
categories that they licensed from the lexicon. This greatly enhances readabil-
ity, but readers should keep in mind that the categories are in the antecedents.
This matters for a number of ways in which structures are manipulated, starting
with hypothetical reasoning, which we turn to next.

Proof (86) only builds structure, using the elimination rules. However, the
base logic also supports hypothetical reasoning: hypothesized elements can be
consumed during the course of a proof and thus become part of the structured
antecedent built during the process. In order for the proof to succeed, these
hypotheses must eventually be discharged. This requires them to be on the
periphery of the structured antecedent in order for the slash introduction rules
(87) to apply. A hypothesized element on the right periphery may be discharged
with a rightward slash (87a), and one on the left periphery may be elimanated
with a leftward slash (87b).

(87) Slash introduction schemas:

a. (Γ ◦i y) ` X

· · · [y ` Y]
···
[/iI]

Γ ` X/iY

reason it is used here. The other notation is referred to as the (Gentzen) sequent presentation.
See (Carpenter, 1998, Ch.5) for an accessible introduction to the two presentations.

24

b.

[y ` Y] · · ·
··· (y ◦i Γ) ` X

[\iI]
Γ ` X\iY

Note that just as eliminating a slash with a modality i builds structure by
connecting two antecedents with ◦i, an introduced slash inherits its modality
from the structure which produced it.

Interestingly, a consequence of hypothetical reasoning combined with slash
introduction is that the type-raising rules given in the previous section are the-
orems of the base logic. This is shown by hypothesizing a function which con-
sumes the argument, and then subsequently withdrawing the assumption.

(88)

Ed ` np [x1 ` s\�np]1
[\�E]

(Ed ◦� x1) ` s
[/�I]

1

Ed ` s/�(s\�np)
The reasoning in this proof, in words, is that if one had an intransitive verb,
then it could consume the np (introduced by Ed from the lexicon), and derive
an s. But the assumed verb x1 must then be withdrawn. This introduces the
rightward slash (since x1 is on the right in the structured antecedent) with the
intransitive verb category as the argument. Note that the hypotheses are marked
by numbers when they are introduced and discharged to improve readability of
proofs which have multiple hypothesized elements.

Structural reasoning: The base logic still has a fairly hands-off ap-
proach to the structured antecedents of proof terms and as such it is not more
flexible than the ab calculus. However, it is possible to augment the base logic
by defining structural rules that reconfigure the antecedent set of premises and
thereby create systems with varying levels of flexibility. For example, the follow-
ing rules will permit structures built via the modalities � and · to be associatively
restructured.

(89) Right Association:
(∆a ◦i (∆b ◦j ∆c)) ` X

[RA] (for i, j ∈ {�, ·})
((∆a ◦i ∆b) ◦j ∆c) ` X

(90) Left Association:
((∆a ◦i ∆b) ◦j ∆c) ` X

[LA] (for i, j ∈ {�, ·})
(∆a ◦i (∆b ◦j ∆c)) ` X

Rules such as this are one component for providing the flexibility which the
AB calculus lacks and which CCG gains with rules based on combinators. For
example, consider the object relative clause man whom Ed saw, using the same
categories assumed in the CCG derivation (53). We begin by introducing entries
from the lexicon and hypothesizing the missing object of saw. We then combine
the premises using the slash elimination rules of the base logic, and restructure
the binary tree built up during the proof using the structural rule of right
association. Finally, we discharge the assumption using the rightward slash
introduction rule, leaving the category s/·np required by the relative pronoun.

25

(91)

man ` n

whom ` (n\�n)/�(s/·np)

Ed ` np

saw ` (s\�np)/·np [x1 ` np]1

[/·E]
(saw ◦· x1) ` s\�np

[\�E]
(Ed ◦� (saw ◦· x1)) ` s

[RA]
((Ed ◦� saw) ◦· x1) ` s

[/·I]1

(Ed ◦1 saw) ` s/·np
[/�E]

(whom ◦� (Ed ◦� saw)) ` n\�n
[\�E]

(man ◦� (whom ◦� (Ed ◦� saw))) ` n

The crucial step for the extraction is where the structural rule RA applies and
puts the assumption on the periphery so that it may be released by slash intro-
duction — before that, it is buried in an inaccessible position. The parallel with
traces and movement operations in mainstream generative grammar should be
clear from this example (see section 5 for pointers to work on such connections).
However, it should be stressed that this is not actual movement, but reasoning
about syntactic types in a structured set of premises.

This sort of associative restructuring also allows the system to handle right-
node raising: Ed saw and Ned heard both have the type s/·np (as they did in
CCG derivation (54)). If the categories of coordinators such as and are of the
form (X\?X)/?X, then Ed saw and Ned heard has the type s/·np as desired.

The set of structural rules can be expanded to permit other ways to reconfig-
ure structured antecedents. For example, the following rules support reordering:

(92) Left Permutation:
(∆a ◦i (∆b ◦j ∆c)) ` X

[LP] (for i, j ∈ {×, ·})
(∆b ◦j (∆a ◦i ∆c)) ` X

(93) Right Permutation:
((∆a ◦i ∆b) ◦j ∆c) ` X

[RP] (for i, j ∈ {×, ·})
((∆a ◦j ∆c) ◦i ∆b) ` X

Consider heavy-NP shift examples such as Ed saw today his tall friend Ted.
The proof would proceed as it did for saw Ted today in (86), and then invoke
right permutation:

(94)
Ed ` np

···
((saw ◦· his-tall-friend-Ted) ◦· today) ` s\�np

[RP]
((saw ◦· today) ◦· his-tall-friend-Ted) ` s\�np

[\�E]
(Ed ◦� ((saw ◦· his-tall-friend-Ted) ◦· today)) ` s

Similar use of the permutation rules would allow a number of other per-
mutation possibilities, such as those needed for non-peripheral extraction and
scrambling. Of course, there are constructions which do not permit such free-
dom, and it is here that the multimodal system shines since it allows selective
access to the structural rules. What this means is that the types of slashes spec-
ified on specific lexical entries will interact with the universal grammar (base

26

logic plus structural rules) to obtain the right behavior. Notice that the ? modal-
ity is not referenced in the associative and permutative restructuring rules: it
is thus limited to the base logic and thereby forces strict non-associativity and
non-permutativity, as it did with the CCG examples in the previous section.
See Moot (2002a) for proofs connecting different types of structural rules to the
generative capacity they engender.

With the base logic and the structural rules given above, many schematic
rules that are commonly employed in rule-based approaches can be shown to
be theorems, similarly to the above proof for type-raising. For example, the
following is a proof of the backward crossed composition rule of CCG.

(95)

∆ ` Y/×Z [z1 ` Z]1

[/×E]
(∆ ◦× z1) ` Y Γ ` X\×Y

[\×E]
((∆ ◦× z1) ◦× Γ) ` X

[RP]
((∆ ◦× Γ) ◦× z1) ` X

[/×I]
1

(∆ ◦× Γ) ` X/×Z

This proof shows that the rule Y/×Z X\×Y ⇒ X/×Z is valid given the base logic
and the structural rule of Right Permutation. The fact that such rules can be
shown as theorems of the base logic plus a set of structural rules provides a cru-
cial connection to CCG and the use of modalities there to control applicability
of its finite set of combinatory rules (Baldridge and Kruijff, 2003). This issue is
discussed further in the next section.

Researchers in CTL consider a much wider range of logical operators than
the binary ones considered here. Most commonly used are the unary connec-
tives, which are used for both features and fine-grained structural control. In
fact, some eschew the sort of multimodal binary system given above in favor of
unary modalities which govern the applicability of structural rules (e.g., Ver-
maat (2005)). Bernardi and Szabolcsi (2008) is a detailed syntactic study of
quantifier scope and negative polarity licensing in Hungarian that makes exten-
sive use of unary operators, including Galois connectives, which were introduced
by Areces and Bernardi (2004) and developed further by Areces et al. (2004).
Bernardi and Moortgat (2010) discuss recent directions in CTL, including Ga-
lois connectives and the Lambek-Grishin calculus. Another recent, related line
of work is that of pregroup grammars (Casadio and Lambek, 2008).

4 Relating type-logical and combinatory approaches

By the late 1960’s, interest in the AB calculus had been greatly reduced due to
the perception that it was basically context-free grammar in different clothing.
This was fair to the extent that it had the same generative capacity as context-
free grammar (Bar-Hillel et al., 1964), but it was unfair in that it provided a very
different architecture for framing theories of grammar and very different means
of extending it. However, the success of Montague grammar in the 1970’s and
its close connection with rule-based extensions of categorial grammar led to a

27

revival of interest in the syntactic potential of categorial grammars. This in turn
spurred a renewed interest in the Lambek calculus in the 1980’s, culminating in
the type-logical approach introduced in the previous section.

Development in the logical and combinatory traditions proceeded largely
independently of one another until the early 2000’s. The former was largely
concerned with linguistic applicability of different logical operators and proof-
theoretic properties of the proposed logical systems. The latter focused more on
obtaining linguistically expressive systems with low automata-theoretic power
and attractive computational properties. The logically-minded categorial gram-
marian will complain that the combinatory approaches are incomplete, partial
systems of type-based inference (and therefore of less interest). The combinatory-
minded one will complain that the logical approaches are impractical for com-
putational applications (and therefore of less interest).

Despite these historical differences, it is important to realize that the actual
linguistic ramifications of both approaches are largely compatible. Further-
more, we can generate rule-based systems from an underlying logic (Baldridge
and Kruijff, 2003; Hoyt and Baldridge, 2008); from this perspective, we can
investigate and develop the underlying logic while enjoying the computational
advantages of a finite rule set whose rules ensure that each derivational step
leads to a reduction, rather than expansion, of categories.

As noted earlier, Jacobson (1992b) used slash-types in a rule-based categorial
grammar that made it possible to force some categories to compose but not to
apply. This is an interesting alternative that is available to a multimodal rule-
based system. However, from the CTL perspective all slashes can be eliminated.
To achieve this effect in a rule-based system derived from a CTL system, if
desired, would require appropriate use of unary modalities (the lock-and-key
strategy (Moortgat, 1997)).

With a CCG rule set derived from a CTL system, we obtain the same basic
analyses as we would with the original system. In one sense, the CCG deriva-
tions can be seen as abbreviated versions of the corresponding CTL proofs.
Hypothetical reasoning and explicit structural reconfiguration do not play a
role: instead, they are folded into the composition and type-raising rules. Of
course, since CTL systems are not finitely axiomatizable, it would offer further
derivational possibilities than the finite CCG rule set.

The claims about the grammars (and the possible analyses they support)
are for most purposes identical given a CTL system defined with the structural
rules suggested in the previous section and CCG standard rule set. Regardless
of the categorial framework, the linguistic work is done in the categories—they
are where the bulk of the linguistic claims are made. This is to say that despite
many apparent surface differences, logical and rule-based categorial systems
are mostly compatible with respect to their treatment of syntactic phenomena.
Viewed in this way, CTL provides a microscope that allows us to peer into very
low level details concerning properties such as associativity and commutativity;
it then tells us how we can prove rule schemata that are part of the CCG
rule base, or which have a similar nature to CCG rules. With those rules in
hand, we can essentially short-cut many of the logical steps needed to complete

28

certain CTL inferences. This means not only shorter derivations, but also many
advantages for practical parsing with categorial grammars.

Generative capacity: The perceived position of natural language on the
Chomsky hierarchy (for those who believe it has such a position) has fluctuated
during the past five decades. During the the 1960’s and 1970’s, it was gener-
ally accepted by linguists that grammars for natural languages required greater
than context-free power. Due to this belief, AB categorial grammar was some-
what sidelined after it was proved to be context-free by Bar-Hillel, Gaifman,
and Shamir in 1964 — even Bar-Hillel himself gave up on categorial grammar
because of this result. Bar-Hillel should not have despaired so easily — both
the belief that categorial grammar was just a notational variant of context-free
grammar and the apparent supposition that the categorial approach could not
somehow be generalized to create systems of greater power were incorrect.

Context-free grammars are indeed now known to be not even weakly ade-
quate to handle all natural language constructions, such as crossing dependen-
cies in Swiss German (Huybregts, 1984; Shieber, 1985). The combinatory rules
employed by CCG increase the context-free power of AB by a small but linguis-
tically significant amount. This places CCG into the class of mildly context-
sensitive formalisms (Vijay-Shanker and Weir, 1994), which are able to capture
crossing dependencies, both with respect to the string languages that charac-
terize them (weak generative capacity) and the structural descriptions which
capture the appropriate dependencies (strong generative capacity). As a mildly
context-sensitive formalism, CCG enjoys worst-case polynomial parsing com-
plexity (n6) (Vijay-Shanker and Weir, 1990).

Categorial systems with more power have been defined. Motivated by scram-
bling phenomena in languages such as Turkish, Multiset-CCG modifies the man-
ner in which categories are constructed and defines rules of combination for them
which allow greater flexibility, resulting in a formalism with more than mildly
context-sensitive power (Hoffman, 1995). CTL using very general structural
rules of permutation is Turing complete (Carpenter, 1995). Moot (2002b) pro-
vides a much finer characterization of the different generative strengths produced
by CTL systems which conform to certain constraints, including the result that
systems which use non-expanding structural rules are only context-sensitive.
This result is particularly interesting since it appears that nearly all linguistic
applications of CTL have obeyed this constraint (Moot, 2002b).

After a long period of relative dormancy as regards research into generative
power, there has been a renewed interest in the strong generative capacity of
CCG (and Tree-Adjoining Grammar). The upshot of this work is that the
equivalences are not so tidy in this regard (Hockenmaier and Young, 2008; Koller
and Kuhlmann, 2009). Furthermore, even the weak generative capacity can
be greatly affected by subtle choices, such as the use of rule restrictions or a
particular set of modalities in CCG (Kuhlmann et al., 2010).

The issue of generative capacity was a historical sticking point between the
CCG and CTL traditions, though it is not a central concern now. Early attempts
to extend the Lambek calculus to allow for permutation led to full permutation
collapse (Moortgat, 1988). CTL, however, does not suffer from such a collapse

29

since commutative operations can be introduced in a controlled fashion with
modal control. Nonetheless, generative capacity does still underly a difference
of explanatory philosophy between linguistic applications of the two frameworks.
For CTL researchers, issues of generative capacity are generally not considered
to be of prime theoretical importance. In contrast, work in both CCG and
its closest sibling formalism, Tree Adjoining Grammar (TAG) (Joshi, 1988),
takes a committed stance on minimizing generative power. The basic linguistic
claim for such formalisms is that their restricted formal power provides inherent
limitations on theories which are based on them (e.g., see Frank (2002)). In this
way, they enforce a wide range of formal universals. Such formalisms sit on the
lower bound of natural language complexity without venturing any further —
they are expressive enough, but cannot do everything.

With respect to generative capacity, a key attraction of the multimodal ap-
proach is that it is able to mix systems of varying power in a resource-sensitive
manner. Thus, more powerful operations of grammatical combination—should
their inclusion be warranted by linguistic evidence—are introduced in a con-
trolled manner.

5 Related formalisms

Categorial grammars of all kinds share deep connections to many other ap-
proaches to natural language grammar.

Tree Adjoining Grammar (Joshi, 1988) is much like CCG in that it is also
highly lexicalized and assumes a small, universal rule component. As mentioned
above, it is also mildly context-sensitive, and like CCG it has been the focus of
a great deal of computational work. In general, there has been a great deal of
intellectual crossover between CCG and TAG.

Categorial grammar’s extreme lexicalism ties it closely to the tradition of de-
pendency grammar (Hudson, 1984; Sgall et al., 1986), which also focuses on the
way in which patterns of semantic linkage hold a sentence together, rather than
segmenting sentences according to analytic patterns such as phrase structure.
The use of typed-feature structures in CCG and related rule-based CGs (Zeevat
et al., 1987; Villavicencio, 2002; Baldridge, 2002; Beavers, 2004; McConville,
2006) is informed by much work in Head-driven Phrase Structure Grammar
(Pollard and Sag, 1994; Sag et al., 2003) and its predecessors. This is espe-
cially true with respect to providing a theory of the lexicon. In this exposition,
we have provided a flat lexicon where no information is shared between the
categories. While useful for explicating how categorial grammar works at the
derivational level, it is clearly an unrealistic way to organize what is, after all,
the core of grammar. There are a number of solutions to manage redundancy
and category relatedness in a lexicon. Using typed-feature structures with in-
heritance as is common in HPSG, it is possible to define a structured lexicon
that eliminates a great deal of redundancy between categories of different arity.
For example, the ditransitive category can be based on the transitive category,
which in turn can be based on the intransitive category, and so on (Villavicen-

30

cio, 2002; Baldridge, 2002; McConville, 2006). Another related strategy is to use
lexical rules that produce additional categories based on core lexical category
assignments (Carpenter, 1992); such rules are similar to those used in Gener-
alized Phrase Structure Grammar (Gazdar et al., 1985) and Lexical Functional
Grammar (Kaplan and Bresnan, 1982).

There are other strong connections with HPSG and LFG. HPSG analyses
typically rely on a very abstract set of phrase-structure rules that are similar
to the rule schemata used in CCG. As with categorial grammar, HPSG lexical
items trigger derivational steps via their subcategorization requirements. Inter-
estingly, Morrill (2007) comments that HPSG is in fact a variety of categorial
grammar: this is hardly a stretch given Pollard’s type-logical formulation of
HPSG (Pollard, 2004). His recent Convergent Grammar (Pollard, 2008) syn-
thesizes ideas from both categorial grammar and HPSG, and is closely related
to Abstract Categorial Grammars (de Groote, 2001) and λ-Grammar (Muskens,
2007).

Many researchers working in constraint-based approaches, especially HPSG,
have adopted construction grammar (Goldberg, 2006) as an organizing philos-
ophy. It might seem that construction grammar, with its emphasis on conven-
tionalized and non-compositional grammatical processes, would be incompati-
ble with categorial grammar. However, there seems to be every reason to use
categorial grammar as a formalism for analyses compatible with construction
grammar. As an example in this direction, Steedman and Baldridge (2011) dis-
cuss the “way” construction as in Marcel slept his way to the top. They suggest
that one of the categories for his to license this construction would essentially
incorporate way as an item that is subcategorized for.

(96) his ` ((s\np)\LEX(s\np))/pp/′′way′′ : λiλpλqλy .cause ′(iterate ′(qy))(result ′(py))

This strategy, which is related to the use of trees with multiple lexical anchors in
TAG, can be used to lexicalize many other phenomena identified by construction
grammarians. If pursued seriously, it would undoubtedly involve an examination
of the theory of the categorial lexicon and ways of managing the consequent
proliferation of category types. Arguably, this is where the focus of attention of
linguistic work in categorial grammar should be anyway.

Johnson (1999) provides a resource-sensitive interpretation of LFG that
builds on many ideas from CTL. See Muskens (2001) for further discussion
of the relationship between categorial grammar and LFG and a proposal for
providing a hybrid of the two approaches, building on ideas from Oehrle (1999).

The basic architectures of theories of grammar based on both CTL and CCG
(mostly unchanged since the late 1980’s) are largely in accord with many of the
principles later advocated in some versions of the Minimalist program (Chom-
sky, 1995). A deeper and perhaps surprising (to some) connection appears
when Minimalism is viewed through the lens of Minimalist grammars (Stabler,
1997; Cornell, 1999). As noted earlier, hypothetical reasoning in CTL combined
with structural reasoning has many parallels with movement operations as con-
strued in Minimalism. For several perspectives on the relation between CTL
and Minimalism, see the collection of papers in the journal of Research on Logic

31

and Computation, 2004, Volume 2(1) (in particular, Retoré and Stabler (2004),
Lecomte (2004), Vermaat (2004) and Cornell (2004)) and Vermaat (2005).

6 Computational applications

Along with much progress with respect to formalizing varieties of categorial
grammar with desirable linguistic properties, there has also been considerable
development in computational applications of categorial grammar. The success
of categorial grammar in these arenas is in great part based on its high degree
of lexicalization and its semantic transparency.

Like many other computationally amenable frameworks, there are grammar
development environments available for testing analyses. The Grail system al-
lows CTL structural rule packages and lexicons to be defined and tested (Moot,
2002b). The OpenCCG system similarly supports (multi-modal) CCG gram-
mar development and performs both sentence parsing and realization; it has
also been used for a wide-range of dialog systems—see Baldridge et al. (2007)
for discussion of OpenCCG grammar development and applications and White
(2006) for specific discussion of efficient realization with OpenCCG.

A major development was the creation of CCGbank (Hockenmaier and Steed-
man, 2007), which has allowed the creation of fast and accurate statistical CCG
parsers for producing deep dependencies (Hockenmaier, 2003; Clark and Cur-
ran, 2007). A key feature of categorial grammar, the fact that lexical categories
are highly informative for overall syntactical analysis, is used in the C&C CCG
parser of Clark and Curran (2007) to make it among the fastest of wide-coverage
statistical parsers that produce deep dependencies. A fast supertagger is used to
perform assignment of lexical categories before parsing begins, thereby drasti-
cally reducing the structural ambiguity that must be considered during parsing.
This adaptive supertagging strategy is exploited by Kummerfeld et al. (2010) in
combination with self-training to achieve fast parsing times with no loss in ac-
curacy. Auli and Lopez (2011b) is a related study that takes a different strategy
for reducing the potential for cutoffs to reduce accuracy: they explore parsing
CCGs with adaptive supertagging techniques and A* search to both explore the
trade-offs made by supertag cutoffs and obtain faster parsing times. In another
paper, the same authors investigate an alternative model that integrates the fea-
tures of a supertagger and parser into the same model (Auli and Lopez, 2011a).
The best performance to date on CCG parsing for CCGbank is obtained by this
model optimized for F -measure (Auli and Lopez, 2011c).

CCGbank has provided a basis for applications other than parsing. For
example, supertaggers learned from CCGbank have been used to improve sta-
tistical machine translation systems (Birch et al., 2007; Hassan et al., 2007), and
discriminative models over CCG derivations have been used for word-ordering
(generating a sentence from a multi-set of input words) (Zhang et al., 2012).
Analyses from parsers have been used for semantic role labeling (Gildea and
Hockenmaier, 2003; Boxwell et al., 2011). OpenCCG grammars that support
wide-coverage sentence realization have been bootstrapped from CCGbank, re-

32

ducing the effort that goes into creating larger grammars while taking advantage
of the deep representations supported by OpenCCG (Espinosa et al., 2008).

A number of augmentations of CCGbank have been created, such as improv-
ing the representation of noun-phrases (Vadas and Curran, 2008), fully lexical-
izing type-changing rules (using hat categories) (Honnibal and Curran, 2009),
and adding verb-particle constructions (Constable and Curran, 2009). Many of
these augmentations were integrated in the rebanking of CCGbank completed by
Honnibal et al. (2010). Most recently, the resources—both data and processing
tools—that have been built up around CCGbank are being used to bootstrap
broader and deeper annotations for the Groningen Meaning Bank, using an
ongoing, collaborative, semi-automated annotation environment (Basile et al.,
2012).

Unlike CCG, CTL has seen little use in computational applications. This is
in large part due to significant challenges in efficiently dealing with the options
made available by using the full logic, which typically allows many more ways
to bracket a string than CCG’s (structurally incomplete) finite rule set permits.
For recent work in parsing restricted CTL systems, see Capelleti (2007) and
Fowler (2008). Interestingly, Capelleti also considers parsing a variant of CCG
with the product operator. This sort of strategy seems to be the most expedient
way to efficiently parse CTL systems: basically, one could compile CCG-like
rules on an as-needed basis and then use standard parsing algorithms that have
been successfully used with CCG.

Of course, the work mentioned above assumes that we have defined a gram-
mar manually, either explicitly in a grammar development environment or im-
plicitly in the derivations of sentences in a corpus. It is naturally an interest-
ing question whether we can learn categorial grammars from less informative
starting points. Villavicencio (2002) learns lexicons for a rule-based CG given
child-directed speech annotated with logical forms. There are recent efforts in
this direction that induce CCG parsers from sentences paired with logical forms
(Zettlemoyer and Collins, 2007; Kwiatkowski et al., 2011). There, a small set
of category schemata and paired, abstract logical forms are assumed, and the
mapping from words to the appropriate categories and lexical semantics is then
learned. Other work has considered how to extend an initial seed lexicon using
grammar-informed Hidden Markov Models (Baldridge, 2008; Ravi et al., 2010)
and inference from a partially completed parse chart (Thomforde and Steedman,
2011).

7 Conclusion

Categorial grammar has a long, but punctuated, history that has coalesced in
the last thirty years to provide unique perspectives on natural language gram-
mar. There are connections not only to combinatory logic and resource-sensitive
linear logic, but also category theory more generally. The controlled associa-
tivity and permutativity available to modern categorial grammars allows them
to enjoy straightforward analyses for a number of otherwise troubling issues in

33

constituency without being overly permissive. Work in Categorial Type Logics
continues to explore new type constructors that may have linguistic applica-
tion and explore their logical/mathematical properties. Work in Combinatory
Categorial Grammar remains focused on practical applications and grammar ac-
quisition, both from annotated resources such as CCGbank and from text alone
using machine learning methods. Given the connections between the two tradi-
tions, briefly sketched out here, it is now easier to translate innovations from one
to the other. With the current set of formal and computational advances and
their application to language phenomena, categorial grammar is well placed to
further deepen our understanding of natural language grammar, both through
standard linguistic investigation into specific languages and constructions and
as the basis for acquisition of grammars using machine learning methods on text
or in communicative agents such as chatbots and robots.

8 Further reading

There is an incredibly diverse number of systems based on or related to categorial
grammar, and a bewildering (and almost equally diverse) set of notations for
those systems. Due to space limitations, much of this work has been only briefly
touched on: the interested reader can hopefully remedy some of these gaps by
looking further into some of the following pointers.

See Steedman’s article on categorial grammar in the previous edition of this
handbook for pointers to further reading prior to 1993. That article covers many
issues and topics that the present one does not, such as more detailed consid-
eration of combinators, the relation of categorial grammar to linear-indexed
grammars, treatments of quantification, and responses to common criticism of
categorial grammar at the time.

Published around the same time, Wood (1993) provides a very complete and
balanced introduction to many ideas, analyses and issues in categorial grammar.
The collection of papers in Kruijff and Oehrle (2003) are recent contributions
within both the combinatory and type-logical traditions. Morrill (2007) gives a
literature survey covering major developments in categorial grammar from 1935
to 1994, with a particular emphasis on type-logical work.

Morrill’s most recent book, Categorial Grammar: Logical Syntax, Seman-
tics, and Processing (Morrill, 2011), is an up-to-date introduction and extended
exposition on the logical tradition in categorial grammar. In particular, it de-
velops discontinuous Lambek grammars, an extension of type-logical grammars
that support a new analysis of gapping, following Hendriks (1995), and it cov-
ers processing and parsing from the type-logical perspective, building on ideas
in Morrill (2000). Some earlier books covering the type-logical approach are
Moortgat (1988), Morrill (1994), and Carpenter (1998). A notable aspect of
Morrill’s book is the thorough discussion of Montague grammar and how it can
be formulated within a modern categorial grammar framework.

There are also several notable article-length discussions of the type-logical
approach. Moortgat’s 2010 chapter in the Handbook of Logic and Language

34

provides an up-to-date and definitive overview of CTL (updating the previous
version, Moortgat (1997), in the first edition of that handbook). Oerhle’s article
in Borsley and Börjars (2011) provides a particularly readable introduction to
CTL. It is worth noting that much of the literature on CTL is highly technical
and difficult going for newcomers. In this regard, Barker (2003) is an excellent
and friendly source for understanding many fundamental concepts in CTL, and
Vermaat (2005) gives one of the most accessible introductions to CTL as a
whole.

A fairly recent development in the space of type-logical approaches is Lam-
bek’s pregroup grammar (Lambek, 1999), a type-based algebraic approach that
seeks to use standard mathematical structures and concepts for modeling nat-
ural language grammar. See Lambek (2000, 2007, 2010) and the collection of
papers in Casadio and Lambek (2008) for articles on the formal and linguistic
properties of pregroup grammars.

Pregroup grammars have also been used to provide a solution to a recent
problem in natural language semantics, in which distributional models of lexical
semantics—based on vector spaces induced from large corpora—have been com-
bined with traditional compositional methods. Coecke et al. (2011) show how a
type-driven semantic compositional model can be developed in the vector-space
setting, in which the syntactic types of the pregroups correspond to tensor prod-
uct spaces. Vectors for relational words, such as verbs and adjectives, live in
the appropriate tensor product space. The framework also provides a semantic
operation analagous to function application in which a verb vector, for exam-
ple, can be “applied” to its arguments, resulting in a vector living in a space
for sentences. The ultimate goal of such efforts is to devise systems that are
able to assign detailed (possibly hierarchical), data-driven meaning represen-
tations to sentences. In these representations, the meaning of life is not (the
constant) life’ : instead, words and phrases have rich internal representations
that allow one to calculate their similarity with other words and phrases. Such
similarity comparisons can then be used for other computations such as making
inferences based on the substitutability of different predications with respect to
one another. See Erk (2010) for an overview of much current work in this vein.

Steedman’s Surface Structure and Interpretation monograph provides a de-
tailed account of core theoretical linguistic concerns from the perspective of
Combinatory Categorial Grammar, with a special emphasis on extraction asym-
metries, coordination, and their interaction with binding (Steedman, 1996a).
His later book The Syntactic Process (Steedman, 2000b) is a thorough exposi-
tion on both formal and theoretical aspects of Combinatory Categorial Grammar
that encapsulates the content of many of the papers written on CCG through
the 1980’s and 1990’s. The article by Steedman and Baldridge in Borsley
and Börjars (2011) gives a current and detailed account of CCG and analy-
ses of a wide-range of bounded and unbounded language phenomena. Finally,
Steedman’s latest book, Taking Scope (Steedman, 2012), develops a surface-
compositional account of of quantification using CCG. In doing so, it covers a
great deal of linguistic ground and touches on both computational and human
sentence processing.

35

References

Ades, Anthony and Steedman, Mark, 1982. “On the order of words.” Linguistics
& Philosophy 7:639–642.

Ajdukiewicz, Kazimierz, 1935. “Die syntaktische Konnexität.” In Storrs McCall
(ed.), Polish Logic 1920-1939, Oxford University Press, 207-231. translated
from Studia Philosophica, 1, 1-27.

Aoun, Joseph and Benmamoun, Elabbas, 1998. “Minimality, Reconstruction,
and PF Movement.” Linguistic Inquiry 29(4):59–597.

Aoun, Joseph and Choueiri, Lena, 2000. “Epithets.” Natural Language and
Linguistic Theory 18:1–39.

Aoun, Joseph, Choueiri, Lina, and Hornstein, Norbert, 2001. “Resumption,
Movement, and Derivational Economy.” Linguistic Inquiry 32(3):371–403.

Aoun, Joseph and Li, Audrey, 2003. Essays on the Representational and Deriva-
tional Nature of Grammar. MIT Press (Cambridge).

Areces, C. and Bernardi, R., 2004. “Analyzing the Core of Categorial Gram-
mar.” Journal of Logic, Language and Information 13(2):121–137.

Areces, C., Bernardi, R., and Moortgat, M., 2004. “Galois connections in cat-
egorial type logic.” In R. Oehrle and L. Moss (eds.), Electronic Notes in
Theoretical Computer Science. Proceedings of FGMOL’01. Elsevier Science
B.V., volume 53, 1–12.

Asudeh, Ash, 2005. “Relational Nouns, Pronouns, and Resumption.” Linguistics
and Philosophy 28:375–446.

Asudeh, Ash, 2012. The Logic of Pronominal Resumption. Oxford University
Press.

Auli, Michael and Lopez, Adam, 2011a. “A Comparison of Loopy Belief Propa-
gation and Dual Decomposition for Integrated CCG Supertagging and Pars-
ing.” In Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, 470–480.

Auli, Michael and Lopez, Adam, 2011b. “Efficient CCG Parsing: A* versus
Adaptive Supertagging.” In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational Linguistics, 1577–
1585.

Auli, Michael and Lopez, Adam, 2011c. “Training a Log-Linear Parser with
Loss Functions via Softmax-Margin.” In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing. Edinburgh, Scotland,
UK.: Association for Computational Linguistics, 333–343.

36

Bach, Emmon, 1979. “Control in Montague Grammar.” Linguistic Inquiry
10:513–531.

Baldridge, Jason, 2002. Lexically Specified Derivational Control in Combinatory
Categorial Grammar. Ph.D. thesis, University of Edinburgh.

Baldridge, Jason, 2008. “Weakly Supervised Supertagging with Grammar-
Informed Initialization.” In Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008). Manchester, UK: Coling 2008
Organizing Committee, 57–64.

Baldridge, Jason, Chatterjee, Sudipta, Palmer, Alexis, and Wing, Ben, 2007.
“DotCCG and VisCCG: Wiki and Programming Paradigms for Improved
Grammar Engineering with OpenCCG.” In Proceedings of the Workshop on
Grammar Engineering Across Frameworks. Stanford, CA.

Baldridge, Jason and Kruijff, Geert-Jan, 2002. “Coupling CCG and Hybrid
Logic Dependency Semantics.” In Proceedings of 40th Annual Meeting of
the Association for Computational Linguistics. Philadelphia, Pennsylvania,
319–326.

Baldridge, Jason and Kruijff, Geert-Jan, 2003. “Multi-Modal Combinatory Cat-
egorial Grammar.” In Proceedings of EACL. Budapest, Hungary.

Bar-Hillel, Yehoshua, 1953. “A Quasi-arithmetical Notation for Syntactic De-
scription.” Language 29:47–58.

Bar-Hillel, Yehoshua, Gaifman, C., and Shamir, E., 1964. “On categorial and
phrase structure grammars.” In Yehoshua Bar-Hillel (ed.), Language and
information, Reading MA: Addison-Wesley. 99–115. 1964.

Barker, Chris, 2003. “A gentle introduction to Type Logical Grammar, the
Curry-Howard correspondence, and cut-elimination.” semanticsarchive.net.

Basile, Valerio, Bos, Johan, Evang, Kilian, and Venhuizen, Noortje, 2012. “A
platform for collaborative semantic annotation.” In Proceedings of the 13th
Conference of the European Chapter of the Association for Computational
Linguistics (EACL). Avignon, France.

Beavers, John, 2004. “Type-inheritance Combinatory Categorial Grammar.” In
Proceedings of COLING-04. Geneva, Switzerland.

Bernardi, Raffaella and Moortgat, Michael, 2010. “Continuation semantics for
the Lambek-Grishin calculus.” Information and Computation 208(5):397–416.

Bernardi, Raffaella and Szabolcsi, Anna, 2008. “Optionality, scope, and li-
censing: An application of partially ordered categories.” Journal of Logic,
Language and Information 17(3):237–283.

37

Birch, Alexandra, Osborne, Miles, and Koehn, Philipp, 2007. “CCG Supertags
in Factored Translation Models.” In Proceedings of the Second Workshop on
Statistical Machine Translation. Prague, 9–16.

Borsley, Robert and Börjars, Kersti (eds.), 2011. Non-Transformational Syntax:
Formal and Explicit Models of Grammar. New York: Wiley-Blackwell.

Boxwell, Stephen, Brew, Chris, Baldridge, Jason, Mehay, Dennis, and Ravi, Su-
jith, 2011. “Semantic Role Labeling Without Treebanks?” In Proceedings of
5th International Joint Conference on Natural Language Processing. Chiang
Mai, Thailand: Asian Federation of Natural Language Processing, 192–200.

Capelleti, Matteo, 2007. Parsing with Structure-Preserving Categorial Gram-
mars. Ph.D. thesis, Utrecht.

Carpenter, Bob, 1992. “Lexical and Unary Rules in Categorial Grammar.” In
Robert Levine (ed.), Formal Grammar: Theory and Implementation, Oxford
University Press, volume 2 of Vancouver Studies in Cognitive Science.

Carpenter, Bob, 1995. “The Turing-Completeness of Multimodal Categorial
Grammar.” ms, http://www.illc.uva.nl/j50/contribs/carpenter/index.html.

Carpenter, Bob, 1998. Type-Logical Semantics. Cambridge Massachusetts: The
MIT Press.

Casadio, Claudia, 1988. “Semantic Categories and the Development of Cat-
egorial Grammars.” In Richard T. Oehrle, Emmon Bach, and Deirdre
Wheeler (eds.), Categorial Grammars and Natural Language Structures, Dor-
drecht: Reidel. 95–123. Proceedings of the Conference on Categorial Gram-
mar,Tucson, AR, June 1985.

Casadio, Claudia and Lambek, Joachim (eds.), 2008. Computational Algebraic
Approaches to Natural Language. Polimetrica.

Chomsky, Noam, 1995. The Minimalist Program. Cambridge, Mass.: MIT
Press.

Choueiri, Lena, 2002. Issues in the Syntax of Resumption: Restrictive Relatives
in Lebanese Arabic. Ph.D. thesis, University of Southern California.

Clark, Stephen and Curran, James, 2007. “Wide-Coverage Efficient Statistical
Parsing with CCG and Log-Linear Models.” Computational Linguistics 33(4).

Coecke, Bob, Sadrzadeh, Mehrnoosh, and Clark, Stephen, 2011. “Mathematical
Foundations for a Compositional Distributional Model of Meaning.” Linguis-
tic Analysis 36: A Festschrift for Joachim (Jim) Lambek .

Constable, James and Curran, James, 2009. “Integrating Verb-Particle Con-
structions into CCG Parsing.” In Proceedings of the Australasian Language
Technology Association Workshop 2009. Sydney, Australia, 114–118.

38

Copestake, Ann, Lascarides, Alex, and Flickinger, Dan, 2001. “An Algebra
for Semantic Construction in Constraint-based Grammars.” In Proceedings
of the 39th Annual Meeting of the Association of Computational Linguistics.
Toulouse, France, 132–139.

Cornell, Thomas, 1999. “Representational Minimalism.” In Hans-Peter Kolb
and Uwe Mönnich (eds.), The Mathematics of Syntactic Structure: Trees and
Their Logics, Walter de Gruyter. 301–340.

Cornell, Thomas, 2004. “Lambek Calculus for Transformational Grammar.”
Research on Language and Computation 2(1):105–126.

Curry, Haskell B. and Feys, Robert, 1958. Combinatory Logic: Vol I. North
Holland, Amsterdam.

Demirdache, Hamida, 1991. Resumptive Chains in Restrictive Relatives, Ap-
positives and Dislocation Structures. Ph.D. thesis, MIT.

Demirdache, Hamida, 1997. “Dislocation, Resumption, and Weakest
Crossover.” In Elena Anagnostopoulou, Henk Van Riemsdijk, and Frans
Zwarts (eds.), Materials on Left-Dislocation, John Benjamins (Philadelphia).
193–231.

Dowty, David, 1982. “Grammatical Relations and Montague Grammar.” In
P. Jacobson and G. K. Pullum (eds.), The Nature of Syntactic Representation,
Dordrecht: Reidel. 79–130.

Dowty, David, 1988. “Type-raising, Functional Composition, and Non-
constituent Coordination.” In Richard T. Oehrle, Emmon Bach, and Deirdre
Wheeler (eds.), Categorial Grammars and Natural Language Structures, Dor-
drecht: Reidel. 153–198. Proceedings of the Conference on Categorial Gram-
mar,Tucson, AR, June 1985.

Dowty, David, 1997. “Non-Constituent Coordination, Wrapping,and Multi-
modal Categorial Grammars.” In M. L. Dalla Chiara et al. (ed.), Structures
and Norms in Science, Dordrecht: Kluwer. 347–368.

Erk, Katrin, 2010. “What Is Word Meaning, Really? (And How Can Distribu-
tional Models Help Us Describe It?).” In Proceedings of the 2010 Workshop
on GEometrical Models of Natural Language Semantics. Uppsala, Sweden:
Association for Computational Linguistics, 17–26.

Espinosa, Dominic, White, Michael, and Mehay, Dennis, 2008. “Hypertagging:
Supertagging for Surface Realization with CCG.” In Proceedings of the 46th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (ACL-08: HLT). Columbus, OH, 183–191.

Fowler, Timothy A. D., 2008. “Efficiently Parsing with the Product-Free Lam-
bek Calculus.” In Proceedings of the 22nd International Conference on Com-
putational Linguistics (Coling 2008). Manchester, UK: Coling 2008 Organiz-
ing Committee, 217–224.

39

Frank, Robert, 2002. Phrase Structure Composition and Syntactic Dependen-
cies. Cambridge, MA: MIT Press.

Gazdar, Gerald, Klein, Ewan, Pullum, Geoffrey K., and Sag, Ivan A., 1985.
Generalised Phrase Structure Grammar. Oxford: Blackwell.

Gildea, Daniel and Hockenmaier, Julia, 2003. “Identifying Semantic Roles Using
Combinatory Categorial Grammar.” In Michael Collins and Mark Steedman
(eds.), Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing. 57–64.

Girard, Jean-Yves, 1987. “Linear Logic.” Theoretical Computer Science 50:1–
102.

Goldberg, Adele, 2006. Constructions at Work. Oxford University Press.

de Groote, Philippe, 2001. “Towards Abstract Categorial Grammars.” In Pro-
ceedings of 39th Annual Meeting of the Association for Computational Lin-
guistics. Toulouse, France: Association for Computational Linguistics, 252–
259.

Hassan, Hany, Sima’an, Khalil, and Way, Andy, 2007. “Supertagged Phrase-
Based Statistical Machine Translation.” In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics. Prague, 288–295.

Hendriks, Petra, 1995. Comparatives and Categorial Grammar. Ph.D. thesis,
Rijksuniversiteit Groningen.

Hepple, Mark, 1990. The Grammar and Processing of Order and Dependency:
A Categorial Approach. Phd, University of Edinburgh.

Hepple, Mark, 1995. “Hybrid Categorial Logics.” Bulletin of the IGPL
3(2,3):343–356. Special Issue on Deduction and Language.

Hockenmaier, Julia, 2003. “Parsing with Generative Models of Predicate-
Argument Structure.” In Proceedings of ACL.

Hockenmaier, Julia and Steedman, Mark, 2007. “CCGbank: A Corpus of CCG
Derivations and Dependency Structures Extracted from the Penn Treebank.”
Computational Linguistics 33(3):355–396.

Hockenmaier, Julia and Young, Peter, 2008. “Non-local scrambling: the equiva-
lence of TAG and CCG revisited.” In Proceedings of The Ninth International
Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+9).
Tbingen, Germany.

Hoffman, Beryl, 1995. Computational Analysis of the Syntax and Interpretation
of ‘Free’ Word-order in Turkish. Ph.D. thesis, University of Pennsylvania.
IRCS Report 95-17.

40

Honnibal, Matthew, 2009. Hat Categories: Representing Form and Function
Simultaneously in Combinatory Categorial Grammar. Ph.D. thesis, University
of Sydney.

Honnibal, Matthew and Curran, James R., 2009. “Fully Lexicalising CCGbank
with Hat Categories.” In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing.

Honnibal, Matthew, Curran, James R., and Bos, Johan, 2010. “Rebanking
CCGbank for Improved NP Interpretation.” In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics. Uppsala, Sweden:
Association for Computational Linguistics, 207–215.

Hoyt, Frederick and Baldridge, Jason, 2008. “A Logical Basis for the D combi-
nator and normal form constraints in Combinatory Categorial Grammar.” In
Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics. Columbus, 326–334.

Hoyt, Frederick M, 2010. Negative Concord in Levantine Arabic. Ph.D. thesis,
University of Texas at Austin.

Hudson, Richard, 1984. Word Grammar. Oxford: Blackwell.

Huybregts, Riny, 1984. “The Weak Inadequacy of Context-free Phrase-structure
Grammars.” In Ger de Haan, Mieke Trommelen, and Wim Zonneveld (eds.),
Van Periferie naar Kern, Foris Dordrecht.

Jacobson, Pauline, 1990. “Raising as Function Composition.” Linguistics and
Philosophy 13:423–475.

Jacobson, Pauline, 1992a. “Antecedent-Contained Deletion in Variable-Free
Semantics.” In Chris Barker and David Dowty (eds.), Proceedings of the
Second Conference on Semantics and Linguistic Theory. OSUWorking Papers
in Linguistics, Ohio State University.

Jacobson, Pauline, 1992b. “Flexible Categorial Grammars: Questions and
Prospects.” In Robert Levine (ed.), Formal Grammar, Oxford: Oxford Uni-
versity Press. 129–167.

Jacobson, Pauline, 1993. “i-within-i Effects in a Variable-Free Semantics and a
Categorial Syntax.” In Paul Dekker and Martin Stokhof (eds.), Proceedings
of the Ninth Amsterdam Colloquium. 349–369.

Jacobson, Pauline, 1999. “Towards a Variable-Free Semantics.” Linguistics and
Philosophy 22:117–184.

Jacobson, Pauline, 2000. “Paycheck Pronouns, Bach-Peters Sentences, and
Variable-Free Semantics.” Natural Language Semantics 8:77–155.

41

Jacobson, Pauline, 2002. “Direct Compositionality and Variable-Free Semantics:
The Case of Binding into Heads.” In Brendan Jackson (ed.), Proceedings of
the Twelfth Conference on Semantics and Linguistic Theory (SALT XII).

Jacobson, Pauline, 2003. “Binding without pronouns (and pronouns without
binding).” In G.-J. M. Kruijff and R.T. Oehrle (eds.), Resource-Sensitivity,
Binding, and Anaphora, Kluwer. 57–96.

Jäger, Gerhard, 1996. Topics in Dynamic Syntax. Ph.D. thesis, Humboldt-
Universität zu Berlin.

Jäger, Gerhard, 1997. “Anaphora and Ellipsis in Type Logical Grammar.” In
Paul Dekker, Martin Stokhof, and Y Venema (eds.), Proceedings of the 11th
Amsterdam Colloquium. University of Amsterdam, University of Amsterdam,
175–180.

Jäger, Gerhard, 2001. “Anaphora and quantification in Categorial Grammar.”
In Michael Moortgat (ed.), Logical Aspects of Computational Linguistics,
Springer, volume 2014 of Springer Lecture Notes in Artificial Intelligence.
70–90.

Jäger, Gerhard, 2005. Anaphora and Type Logical Grammar. Springer.

Johnson, Mark, 1999. “A Resource Sensitive Interpretation of Lexical Functional
Grammar.” Journal of Logic, Language and Information 8(1):45–81.

Joshi, Aravind, 1988. “Tree Adjoining Grammars.” In David Dowty, Lauri
Karttunen, and Arnold Zwicky (eds.), Natural Language Parsing, Cambridge:
Cambridge University Press. 206–250.

Kaplan, Ronald and Bresnan, Joan, 1982. “Lexical-Functional Grammar: A
formal system for grammatical representation.” In The Mental Representation
of Grammatical Relations, Cambridge, MA: MIT Press. 173–281.

Koller, Alexander and Kuhlmann, Marco, 2009. “Dependency trees and the
strong generative capacity of CCG.” In Proceedings of the 12th Conference
of the European Chapter of the ACL. Athens.

Kruijff, Geert-Jan M and Oehrle, Richard T. (eds.), 2003. Resource-Sensitivity,
Binding and Anaphora. Kluwer.

Kuhlmann, Marco, Koller, Alexander, and Satta, Giorgio, 2010. “The impor-
tance of rule restrictions in CCG.” In Proceedings of the 48th ACL. Uppsala.

Kummerfeld, Jonathan K., Roesner, Jessika, Dawborn, Tim, Haggerty, James,
Curran, James R., and Clark, Stephen, 2010. “Faster Parsing by Supertagger
Adaptation.” In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics. Uppsala, Sweden: Association for Computational
Linguistics, 345–355.

42

Kwiatkowski, Tom, Zettlemoyer, Luke, Goldwater, Sharon, and Steedman,
Mark, 2011. “Lexical Generalization in CCG Grammar Induction for Seman-
tic Parsing.” In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing. Edinburgh, Scotland, UK.: Association for
Computational Linguistics, 1512–1523.

Lambek, Joachim, 1958. “The mathematics of sentence structure.” American
Mathematical Monthly 65:154–169.

Lambek, Joachim, 1999. “Type Grammar Revisited.” In Logical Aspects of
Computational Linguistics, Spring, volume 1582 of Lecture Notes in Computer
Science. 1–27.

Lambek, Joachim, 2000. “Type grammar meets german word order.” Theoretical
Linguistics (26):19–30.

Lambek, Joachim, 2007. “From word to sentence: a pregroup analysis of the ob-
ject pronoun who(m).” Journal of Logic, Language and Information 16:303–
323.

Lambek, Joachim, 2010. “Exploring feature agreement in french with paral-
lel pregroup computations.” Journal of Logic, Language and Information
19(1):75–88.

Lecomte, Alain, 2004. “Rebuilding MP on a Logical Ground.” Research on
Language and Computation 2(1):27–55.

McConville, Mark, 2006. “Inheritance and the CCG Lexicon.” In Proceedings
of the European Association for Computational Linguistics. Trento, 1–8.

Moortgat, M. and Oehrle, R., 1994. “Adjacency, dependency, and order.” In
P. Dekker and M. Stokhof (eds.), Proceedings of the Ninth Amsterdam Collo-
quium. Amsterdam: ILLC.

Moortgat, Michael, 1988. Categorial Investigations: Logical and Linguistic As-
pects of the Lambek Calculus. Dordrecht, The Netherlands: Foris.

Moortgat, Michael, 1997. “Categorial Type Logics.” In Johan van Benthem
and Alice ter Meulen (eds.), Handbook of Logic and Language, Amsterdam
New York etc.: Elsevier Science B.V.

Moortgat, Michael, 1999. “Constants of grammatical reasoning.” In Gosse
Bouma, Erhard W. Hinrichs, Geert-Jan M. Kruijff, and Richard T. Oehrle
(eds.), Constraints and Resources in Natural Language Syntax and Semantics,
Stanford CA: CSLI Publications.

Moortgat, Michael, 2010. “Categorial Type Logics.” In Johan van Benthem
and Alice ter Meulen (eds.), Handbook of Logic and Language, Amsterdam
New York etc.: Elsevier Science B.V. Second edition.

43

Moot, R., 2002a. Proof Nets for Linguistic Analysis. Ph.D. thesis, UiL OTS,
University of Utrecht.

Moot, Richard, 2002b. Proof Nets for Linguistic Analysis. Ph.D. thesis, Uni-
versity of Utrecht.

Morrill, Glyn, 2000. “Incremental Processing and Acceptability.” Computational
Linguistics 26:319–338.

Morrill, Glyn, 2007. “A Chronicle of Type Logical Grammar: 1935–1994.”
Research on Language and Computation 5(3):359–386.

Morrill, Glyn, 2011. Categorial Grammar: Logical Syntax, Semantics, and Pro-
cessing. Oxford: Oxford University Press.

Morrill, Glyn V., 1994. Type Logical Grammar: Categorial Logic of Signs.
Dordrecht, Boston, London: Kluwer Academic Publishers.

Muskens, Reinhard, 2001. “Categorial Grammar and Lexical-Functional Gram-
mar.” In Miriam Butt and Tracy Holloway King (eds.), Proceedings of the
LFG01 Conference. CSLI Publications, 259–279.

Muskens, Reinhard, 2007. “Separating Syntax and Combinatorics in Categorial
Grammar.” Research on Language and Computation 5:267–285.

Oehrle, Richard T., 1999. “LFG as Labeled Deduction.” In M. Dalrymple (ed.),
Semantics and Syntax in Lexical Functional Grammar, Cambridge, MA: MIT
Press. 319–357.

Oehrle, Richard T., 2011. “Multi-Modal Type-Logical Grammar.” In Robert
Borsley and Kersti Börjars (eds.), Non-Transformational Syntax: Formal and
Explicit Models of Grammar, New York: Blackwell.

Ouhalla, Jamal, 2001. “Parasitic Gaps and Resumptive Pronouns.” In Peter
Cullicover and Paul Postal (eds.), Parasitic Gaps, Cambridge: MIT Press.
147–180.

Pollard, Carl, 2004. “Type-Logical HPSG.” In G. Jaeger, P. Monachesi,
G. Penn, and S. Wintner (eds.), Proceedings of Formal Grammar 2004
(Nancy). 107–124.

Pollard, Carl, 2008. “Hyperintensional Questions.” In W. Hodges and
R. de Queiroz (eds.), Proceedings of the 15th Workshop on Logic, Language,
Information, and Computation (WoLLIC ’08). volume 5110 of Springer Lec-
ture Notes in Artificial Intelligence, 261–274.

Pollard, Carl and Sag, Ivan, 1994. Head Driven Phrase Structure Grammar.
CSLI/Chicago University Press, Chicago.

44

Ravi, Sujith, Baldridge, Jason, and Knight, Kevin, 2010. “Minimized Models
and Grammar-Informed Initialization for Supertagging with Highly Ambigu-
ous Lexicons.” In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics. Uppsala, Sweden: Association for Computa-
tional Linguistics, 495–503.

Retoré, Christian and Stabler, Edward, 2004. “Generative Grammars in Re-
source Logics.” Research on Language and Computation 2(1):3–25.

Ross, John Robert, 1967. Constraints on Variables in Syntax. Ph.D. thesis,
MIT. Published as “Infinite Syntax!”, Ablex, Norton, NJ. 1986.

Sag, Ivan A., Wasow, Tom A., and Bender, Emily, 2003. Syntactic Theory: A
Formal Introduction. Stanford, California: Center for the Study of Language
and Information, second edition.

Schönfinkel, Moses, 1924. “Über die Bausteine der mathematischen Logik.”
Mathematische Annalen 92(305-316).

Sgall, Petr, Hajičová, Eva, and Panevová, Jarmila, 1986. The Meaning of the
Sentence in Its Semantic and Pragmatic Aspects. Dordrecht, Boston, London:
D. Reidel Publishing Company.

Shieber, Stuart, 1985. “Evidence against the context-freeness of natural lan-
guage.” Linguistics and Philosophy 8:333–343.

Stabler, Edward, 1997. “Derivational minimalism.” In Christian Retorè (ed.),
Logical Aspects of Computational Linguistics, Springer. 68–95.

Steedman, Mark, 1985. “Dependency and Coordination in the Grammar of
Dutch and English.” Language 61:523–568.

Steedman, Mark, 1996a. Surface Structure and Interpretation. Cambridge
Mass.: MIT Press. Linguistic Inquiry Monograph, 30.

Steedman, Mark, 1996b. Surface Structure and Interpretation. MIT Press.

Steedman, Mark, 2000a. “Implications of Binding for Lexicalized Grammars.”
In Anne Abeillé and Owen Rambow (eds.), Tree Adjoining Grammars: For-
malisms, Linguistic Analysis, and Processing, Stanford: CSLI. 283–301.

Steedman, Mark, 2000b. The Syntactic Process. Cambridge Mass.: The MIT
Press.

Steedman, Mark, 2012. Taking Scope. MIT Press/Bradford Books.

Steedman, Mark and Baldridge, Jason, 2011. “Combinatory Categorial Gram-
mar.” In Robert Borsley and Kersti Börjars (eds.), Non-Transformational
Syntax: Formal and Explicit Models of Grammar, New York: Blackwell.

45

Szabolcsi, Anna, 1987. “Bound Variables in Syntax: Are There Any?” In
Stokhof Gronendijk and Veltman (eds.), Proceedings of the Sixth Amster-
dam Colloquium. Institute for Language, Logic, and Information, Amsterdam,
331–351.

Szabolcsi, Anna, 1992. “On Combinatory Grammar and Projection from the
Lexicon.” In Ivan Sag and Anna Szabolcsi (eds.), Lexical Matters, Stan-
ford, CA: CSLI Publications. 241–268.

Szabolcsi, Anna, 2003. “Binding On the Fly: Cross-Sentential Anaphora in
Variable-Free Semantics.” In Richard Oehrle and Geert-Jan Kruijff (eds.),
Resource Sensitivity, Binding, and Anaphora, Kluwer. 215–229.

Thomforde, Emily and Steedman, Mark, 2011. “Semi-supervised CCG Lexicon
Extension.” In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing. Edinburgh, Scotland, UK.: Association for
Computational Linguistics, 1246–1256.

Vadas, David and Curran, James R., 2008. “Parsing Noun Phrase Structure
with CCG.” In Proceedings of ACL-08: HLT. Columbus, Ohio: Association
for Computational Linguistics, 335–343.

van Benthem, Johann, 1989. “Logical Constants Across Varying Types.” Notre
Dame Journal of Formal Logic 30(3):315–342.

Vermaat, W., 1999. “Controlling Movement: Minimalism in a deductive per-
spective.”

Vermaat, Willemijn, 2004. “The Minimalist Move Operation in a Deductive
Perspective.” Research on Language and Computation 2(1):69–85.

Vermaat, Willemijn, 2005. The Logic of Variation: A cross-linguistic account
of wh-question formation. Ph.D. thesis, Utrecht University.

Vijay-Shanker, K. and Weir, David, 1990. “Polynomial Time Parsing of Com-
binatory Categorial Grammars.” In Proceedings of the 28th Annual Meeting
of the Association for Computational Linguistics, Pittsburgh. 1–8.

Vijay-Shanker, K. and Weir, David, 1994. “The Equivalence of Four Extensions
of Context-free Grammar.” Mathematical Systems Theory 27:511–546.

Villavicencio, Aline, 2002. The Acquisition of a Unification-Based Generalised
Categorial Grammar. Ph.D. thesis, University of Cambridge.

White, Michael, 2006. “Efficient Realization of Coordinate Structures in Com-
binatory Categorial Grammar.” Research on Language and Computation
4(1):39–75.

Wood, Mary McGee, 1993. Categorial Grammar. Routledge.

46

Zeevat, Henk, Klein, Ewan, and Calder, Jo, 1987. “An Introduction to Unifi-
cation Categorial Grammar.” In N. Haddock et al. (ed.), Edinburgh Working
Papers in Cognitive Science, 1: Categorial Grammar, Unification Grammar,
and Parsing, University of Edinburgh. 195–222.

Zettlemoyer, Luke and Collins, Michael, 2007. “Online Learning of Relaxed
CCG Grammars for Parsing to Logical Form.” In Proceedings of EMNLP-
CoNLL 2007.

Zhang, Yue, Blackwood, Graeme, and Clark, Stephen, 2012. “Syntax-Based
Word Ordering Incorporating a Large-Scale Language Model.” In Proceed-
ings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics (EACL). Avignon, France.

47

